期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Seismic evaluation of frequency influence and resonant behavior for lead rubber bearing isolated rigid rectangular liquid tanks
1
作者 Jyoti Ranjan Barik kishore chandra biswal 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期973-994,共22页
The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded... The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency. 展开更多
关键词 lead rubber bearing frequency domain resonant inputs long-duration excitation
下载PDF
A numerical study of violent sloshing problems with modified MPS method 被引量:6
2
作者 Debadatta Jena kishore chandra biswal 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第4期659-667,共9页
A numerical study on violent liquid sloshing phenomenon in a partially filled rectangular container is carried out by using moving particle semi-implicit(MPS) method. The present study deals with the implementation ... A numerical study on violent liquid sloshing phenomenon in a partially filled rectangular container is carried out by using moving particle semi-implicit(MPS) method. The present study deals with the implementation of five modifications all together over the original MPS method. The modifications include improved source terms for pressure Poisson equation, special approximation technique for the representation of gradient differential operator, collective action of mixed free surface particle identification boundary conditions, effecting Neumann boundary condition on solving the PPE and fixing judiciously the parting distance among particles to prevent collision. The suitability of the kernel function used in the original MPS method along with these five modifications is investigated for violent sloshing problems. The present model ensures a good agreement between numerical results with the existing experimental observations. The model is successfully applied to a partially filled tank undergoing horizontal sinusoidal excitation to compute the sloshing wave amplitudes and pressure on tank walls. The assessment of dynamic behaviour manifested in terms of base shear, overturning moment and impact pressure load exerted on tank ceiling induced by violent sloshing motion using MPS method is not reported in the open literature and has been efficiently carried out in the present study. 展开更多
关键词 Sloshing particle method impact pressure base shear overturning moment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部