The paper searched for raw data about wild-caught fish, where a sigmoidal growth function described the mass growth significantly better than non-sigmoidal functions. Specifically, von Bertalanffy’s sigmoidal growth ...The paper searched for raw data about wild-caught fish, where a sigmoidal growth function described the mass growth significantly better than non-sigmoidal functions. Specifically, von Bertalanffy’s sigmoidal growth function (metabolic exponent-pair a = 2/3, b = 1) was compared with unbounded linear growth and with bounded exponential growth using the Akaike information criterion. Thereby the maximum likelihood fits were compared, assuming a lognormal distribution of mass (i.e. a higher variance for heavier animals). Starting from 70+ size-at-age data, the paper focused on 15 data coming from large datasets. Of them, six data with 400 - 20,000 data-points were suitable for sigmoidal growth modeling. For these, a custom-made optimization tool identified the best fitting growth function from the general von Bertalanffy-Pütter class of models. This class generalizes the well-known models of Verhulst (logistic growth), Gompertz and von Bertalanffy. Whereas the best-fitting models varied widely, their exponent-pairs displayed a remarkable pattern, as their difference was close to 1/3 (example: von Bertalanffy exponent-pair). This defined a new class of models, for which the paper provided a biological motivation that relates growth to food consumption.展开更多
The collapse of adobe bricks under compressive forces and exposure to water has a duration of several minutes, with only minor displacements before and after the collapse, whence a conceptual question arises: When doe...The collapse of adobe bricks under compressive forces and exposure to water has a duration of several minutes, with only minor displacements before and after the collapse, whence a conceptual question arises: When does the collapse start and when does it end? The paper compares several mathematical models for the description of the fracture process from displacement data. It recommends the use of linear splines to identify the beginning and end of the collapse phase of adobe bricks.展开更多
文摘The paper searched for raw data about wild-caught fish, where a sigmoidal growth function described the mass growth significantly better than non-sigmoidal functions. Specifically, von Bertalanffy’s sigmoidal growth function (metabolic exponent-pair a = 2/3, b = 1) was compared with unbounded linear growth and with bounded exponential growth using the Akaike information criterion. Thereby the maximum likelihood fits were compared, assuming a lognormal distribution of mass (i.e. a higher variance for heavier animals). Starting from 70+ size-at-age data, the paper focused on 15 data coming from large datasets. Of them, six data with 400 - 20,000 data-points were suitable for sigmoidal growth modeling. For these, a custom-made optimization tool identified the best fitting growth function from the general von Bertalanffy-Pütter class of models. This class generalizes the well-known models of Verhulst (logistic growth), Gompertz and von Bertalanffy. Whereas the best-fitting models varied widely, their exponent-pairs displayed a remarkable pattern, as their difference was close to 1/3 (example: von Bertalanffy exponent-pair). This defined a new class of models, for which the paper provided a biological motivation that relates growth to food consumption.
文摘The collapse of adobe bricks under compressive forces and exposure to water has a duration of several minutes, with only minor displacements before and after the collapse, whence a conceptual question arises: When does the collapse start and when does it end? The paper compares several mathematical models for the description of the fracture process from displacement data. It recommends the use of linear splines to identify the beginning and end of the collapse phase of adobe bricks.