Aim: Lead aprons are used to protect against scattered radiation from the patient during interventional procedures and certain special conventional radiological examinations. Given the importance of the role lead apro...Aim: Lead aprons are used to protect against scattered radiation from the patient during interventional procedures and certain special conventional radiological examinations. Given the importance of the role lead aprons are supposed to play in radiation protection, we propose to assess their conformity in medical imaging departments in public and religious hospitals in Togo. Materials and method: A multi-centre survey conducted from 26 November to 06 December 2021 in the radiology departments of public and religious health facilities in Togo. All aprons in use were included. The evaluation criteria were physical (visual), quantitative (radiographic) and qualitative (dosimetric). Results: We had registred 43 aprons among wich 27 (62.79%) leaded aprons were labelled non-compliant and 16 (37.21%) were labelled compliant. Of the aprons judged to be non-compliant, 70.37% were more than 10 years old and 96.30% showed defects on the radiographic images. The most common defects were vampire marks (18.64%), multiple folds (16.96%), cracks (16.96%), multiple cracks (15.25%), tears (8.47%), absence of lead (5.08%), holes (3.39%) and lead corrosion (1.69%). Defective aprons (62.96%) had at least two defects. The defects were of thoraco-abdomino-pelvic (74.07%), thoracic (14.82%) and abdomino-pelvic (11.11%) topography. For indirect exposure at 50 and 70 kilovolts, all the aprons had an attenuation factor greater than 90%. After dosimetric measurement, 13.95% of aprons had attenuation factors below 90% for indirect exposure at 100 kilovolts. Conclusion: The compliance of the leaded decks is trifactorial (physical, radiographic and dosimetric). However, there is no significant difference in X-ray attenuation capacity between defective and normal decks.展开更多
文摘Aim: Lead aprons are used to protect against scattered radiation from the patient during interventional procedures and certain special conventional radiological examinations. Given the importance of the role lead aprons are supposed to play in radiation protection, we propose to assess their conformity in medical imaging departments in public and religious hospitals in Togo. Materials and method: A multi-centre survey conducted from 26 November to 06 December 2021 in the radiology departments of public and religious health facilities in Togo. All aprons in use were included. The evaluation criteria were physical (visual), quantitative (radiographic) and qualitative (dosimetric). Results: We had registred 43 aprons among wich 27 (62.79%) leaded aprons were labelled non-compliant and 16 (37.21%) were labelled compliant. Of the aprons judged to be non-compliant, 70.37% were more than 10 years old and 96.30% showed defects on the radiographic images. The most common defects were vampire marks (18.64%), multiple folds (16.96%), cracks (16.96%), multiple cracks (15.25%), tears (8.47%), absence of lead (5.08%), holes (3.39%) and lead corrosion (1.69%). Defective aprons (62.96%) had at least two defects. The defects were of thoraco-abdomino-pelvic (74.07%), thoracic (14.82%) and abdomino-pelvic (11.11%) topography. For indirect exposure at 50 and 70 kilovolts, all the aprons had an attenuation factor greater than 90%. After dosimetric measurement, 13.95% of aprons had attenuation factors below 90% for indirect exposure at 100 kilovolts. Conclusion: The compliance of the leaded decks is trifactorial (physical, radiographic and dosimetric). However, there is no significant difference in X-ray attenuation capacity between defective and normal decks.