Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup...Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup requires first and foremost their characterization. The aim of this study is therefore to determine the main physical and chemical characteristics of rubber latex cup bottom oil. Oil’s physical parameters determination shows that it has a density of 951 kg∙m−3, a kinematic viscosity of 48.57 cSt and a water content of 0.0845%. Chemical parameters, meanwhile, indicate that this cup bottom residue has a fat content of 95.96%, an acid number of 2.805 mg KOH/g and an iodine number of 92.42 g I2/100g. Therefore, rubber latex cup bottom oil can be used in the formulation of biofuels, biolubricants, paints, varnishes, alkyd resins, polishing oils, soaps, and insecticides.展开更多
This study allowed us to highlight the level of pollution of a BAYA River water near several poultry farms and the sizing of an anaerobic digester that will be able to treat chicken manure from a poultry farm (BRIN FO...This study allowed us to highlight the level of pollution of a BAYA River water near several poultry farms and the sizing of an anaerobic digester that will be able to treat chicken manure from a poultry farm (BRIN FOUNDATION). To evaluate this pollution, the parameters such as ammonium (NH<sub>4</sub><sup>+</sup>), Phosphate (PO<sub>4</sub><sup>3-</sup>), Biochemical Oxygen Demand (DBO<sub>5</sub>) and Nitrate (NO<sub>3</sub><sup>-</sup>) were determined. For sampling point P1, the concentrations in mg/L of these parameters are (25.00 ± 4.25), (0.40 ± 0.20), (98.00 ± 6.35) and (96.00 ± 5.35), respectively. On the other hand, for sampling point P2, the concentrations in mg/L of these parameters are respectively (33.00 ± 9.05), (0.70 ± 0.12), (123 ± 7.13) and (93 ± 7.10). These values indicate a strong organic pollution of the BAYA River. The determination of the different concentrations of the organic pollution parameters allowed us to evaluate the degradation and the quality of the water of the BAYA River water, by the poultry activity. However, considering the physicochemical properties of the waste (chicken manure), which is the main source of organic pollution, we have considered an energy recovery through the production of biogas. This requires the design, sizing, and implementation of an anaerobic digester in a poultry farm. Therefore, the project would require the construction of an adapted masonry type anaerobic digester with a capacity of 10 m<sup>3</sup>.展开更多
The problem of water depollution is gaining importance, especially as regulatory standards concerning drinking water are increasingly strict. The different industries (textile industries) generate chemically stable po...The problem of water depollution is gaining importance, especially as regulatory standards concerning drinking water are increasingly strict. The different industries (textile industries) generate chemically stable pollutants such as methyl orange which make their degradation difficult. It is therefore necessary to find new, more effective techniques for the treatment of these discharges. Among the different solutions proposed to deal with this problem, we find advanced oxidation processes (POAs) which are clean and promising technologies in the field of wastewater depollution. In this regard, heterogeneous photocatalysis was used in an aqueous suspension of titanium oxide (TiO2) using a ultraviolet (UV) lamp as artificial radiation. The objective of this work is to study the influence of some operating parameters such as: the catalyst mass, the initial pollutant concentration, the volume of the solution and the pH of the solution, were examined. The results obtained showed that this photocatalyst made it possible to degrade 99.85% of the initial concentration of methyl orange (10 ppm), after 240 min of irradiation with an optimal mass of 0.50 g of TiO2 for a volume of 200 mL of methyl orange solution at pH = 3.0.展开更多
文摘Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup requires first and foremost their characterization. The aim of this study is therefore to determine the main physical and chemical characteristics of rubber latex cup bottom oil. Oil’s physical parameters determination shows that it has a density of 951 kg∙m−3, a kinematic viscosity of 48.57 cSt and a water content of 0.0845%. Chemical parameters, meanwhile, indicate that this cup bottom residue has a fat content of 95.96%, an acid number of 2.805 mg KOH/g and an iodine number of 92.42 g I2/100g. Therefore, rubber latex cup bottom oil can be used in the formulation of biofuels, biolubricants, paints, varnishes, alkyd resins, polishing oils, soaps, and insecticides.
文摘This study allowed us to highlight the level of pollution of a BAYA River water near several poultry farms and the sizing of an anaerobic digester that will be able to treat chicken manure from a poultry farm (BRIN FOUNDATION). To evaluate this pollution, the parameters such as ammonium (NH<sub>4</sub><sup>+</sup>), Phosphate (PO<sub>4</sub><sup>3-</sup>), Biochemical Oxygen Demand (DBO<sub>5</sub>) and Nitrate (NO<sub>3</sub><sup>-</sup>) were determined. For sampling point P1, the concentrations in mg/L of these parameters are (25.00 ± 4.25), (0.40 ± 0.20), (98.00 ± 6.35) and (96.00 ± 5.35), respectively. On the other hand, for sampling point P2, the concentrations in mg/L of these parameters are respectively (33.00 ± 9.05), (0.70 ± 0.12), (123 ± 7.13) and (93 ± 7.10). These values indicate a strong organic pollution of the BAYA River. The determination of the different concentrations of the organic pollution parameters allowed us to evaluate the degradation and the quality of the water of the BAYA River water, by the poultry activity. However, considering the physicochemical properties of the waste (chicken manure), which is the main source of organic pollution, we have considered an energy recovery through the production of biogas. This requires the design, sizing, and implementation of an anaerobic digester in a poultry farm. Therefore, the project would require the construction of an adapted masonry type anaerobic digester with a capacity of 10 m<sup>3</sup>.
文摘The problem of water depollution is gaining importance, especially as regulatory standards concerning drinking water are increasingly strict. The different industries (textile industries) generate chemically stable pollutants such as methyl orange which make their degradation difficult. It is therefore necessary to find new, more effective techniques for the treatment of these discharges. Among the different solutions proposed to deal with this problem, we find advanced oxidation processes (POAs) which are clean and promising technologies in the field of wastewater depollution. In this regard, heterogeneous photocatalysis was used in an aqueous suspension of titanium oxide (TiO2) using a ultraviolet (UV) lamp as artificial radiation. The objective of this work is to study the influence of some operating parameters such as: the catalyst mass, the initial pollutant concentration, the volume of the solution and the pH of the solution, were examined. The results obtained showed that this photocatalyst made it possible to degrade 99.85% of the initial concentration of methyl orange (10 ppm), after 240 min of irradiation with an optimal mass of 0.50 g of TiO2 for a volume of 200 mL of methyl orange solution at pH = 3.0.