The intensification of physicochemical processes in the sonochemical reactor chamber is widely used in problems of synthesis,extraction and separation.One of the most important mechanisms at play in such processes is ...The intensification of physicochemical processes in the sonochemical reactor chamber is widely used in problems of synthesis,extraction and separation.One of the most important mechanisms at play in such processes is the acoustic cavitation due to the non-uniform distribution of acoustic pressure in the chamber.Cavitation has a strong impact on the surface degradation mechanisms.In this work,a numerical calculation of the acoustic pressure distribution inside the reactor chamber was performed using COMSOL Multiphysics.The numerical results have revealed the dependence of the structure of the acoustic pressure field on the boundary conditions for various thicknesses of the piezoelectric transducer.In particular,the amplitude of the acoustic pressure is minimal in the case of absorbing boundaries,and the attenuation becomes more significant as the thickness of the piezoelectric transducer increases.In addition,reflective boundaries play a significant role in the formation and distribution of zones of maximum cavitation activity.展开更多
Ultrasonic baths and sonochemical reactors are widely used in industrial applications dealing with surface cleaningand chemical synthesis. The processes of erosion, cleaning and structuring of the surface can be typic...Ultrasonic baths and sonochemical reactors are widely used in industrial applications dealing with surface cleaningand chemical synthesis. The processes of erosion, cleaning and structuring of the surface can be typically controlledby changing relevant influential parameters. In particular, in this work, we experimentally investigate theeffect of NaCl concentration (0–5.5 mol/L) on the erosion of an aluminum foil under ultrasonic exposure at afrequency of 28 kHz. Special attention is paid to the determination of cavitation zones and their visualizationusing heat maps. It is found that at low NaCl concentration (0.3 mol/L), the foil destruction rate is higher thanin distilled water. At higher concentrations of salt, cavitation takes place mainly in the upper part of the container.展开更多
文摘The intensification of physicochemical processes in the sonochemical reactor chamber is widely used in problems of synthesis,extraction and separation.One of the most important mechanisms at play in such processes is the acoustic cavitation due to the non-uniform distribution of acoustic pressure in the chamber.Cavitation has a strong impact on the surface degradation mechanisms.In this work,a numerical calculation of the acoustic pressure distribution inside the reactor chamber was performed using COMSOL Multiphysics.The numerical results have revealed the dependence of the structure of the acoustic pressure field on the boundary conditions for various thicknesses of the piezoelectric transducer.In particular,the amplitude of the acoustic pressure is minimal in the case of absorbing boundaries,and the attenuation becomes more significant as the thickness of the piezoelectric transducer increases.In addition,reflective boundaries play a significant role in the formation and distribution of zones of maximum cavitation activity.
文摘Ultrasonic baths and sonochemical reactors are widely used in industrial applications dealing with surface cleaningand chemical synthesis. The processes of erosion, cleaning and structuring of the surface can be typically controlledby changing relevant influential parameters. In particular, in this work, we experimentally investigate theeffect of NaCl concentration (0–5.5 mol/L) on the erosion of an aluminum foil under ultrasonic exposure at afrequency of 28 kHz. Special attention is paid to the determination of cavitation zones and their visualizationusing heat maps. It is found that at low NaCl concentration (0.3 mol/L), the foil destruction rate is higher thanin distilled water. At higher concentrations of salt, cavitation takes place mainly in the upper part of the container.