Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the uti...Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the utilization of i-TE is currently based on capacitive charge/discharge, which results in discontinuous working mode and low energy density. Here,we introduce an ion–electron thermoelectric synergistic(IETS)effect by utilizing an ion–electron conductor. Electrons/holes can drift under the electric field generated by thermodiffusion of ions, thus converting the ionic current into electrical current that can pass through the external circuit. Due to the IETS effect, i-TE is able to operate continuously for over 3000 min.Moreover, our i-TE exhibits a thermopower of 32.7 mV K^(-1) and an energy density of 553.9 J m^(-2), which is more than 6.9 times of the highest reported value. Consequently, direct powering of electronics is achieved with i-TE. This work provides a novel strategy for the design of high-performance i-TE materials.展开更多
Lead halide hybrid perovskites(LHP)have emerged as one of the most promising photovoltaic materials for their remarkable solar energy conversion ability.The transportation of the photoinduced carriers in LHP could scr...Lead halide hybrid perovskites(LHP)have emerged as one of the most promising photovoltaic materials for their remarkable solar energy conversion ability.The transportation of the photoinduced carriers in LHP could screen the defect recombination with the help of the large polaron formation.However,the physical insight of the relationship between the superior optical-electronic performance of perovskite and its polaron dynamics related to the electron-lattice strong coupling induced by the substitution engineering is still lack of investigation.Here,the bandgap modulated thin films ofα-FAPbI_(3)with different element substitution is investigated by the time resolved Terahertz spectroscopy.We find the polaron recombination dynamics could be prolonged in LHP with a relatively smaller bandgap,even though the formation of polaron will not be affected apparently.Intuitively,the large polaron mobility in(FAPb I_(3))0.95(MAPbI_(3))0.05thin film is~30%larger than that in(FAPb I_(3))0.85(MAPbBr_(3))0.15.The larger mobility in(FAPb I_(3))0.95(MAPb I_(3))0.05could be assigned to the slowing down of the carrier scattering time.Therefore,the physical origin of the higher carrier mobility in the(FAPb I_(3))0.95(MAPbI_(3))0.05should be related with the lattice distortion and enhanced electron–phonon coupling induced by the substitution.In addition,(FAPbI_(3))0.95(MAPbI_(3))0.05will lose fewer active carriers during the polaron cooling process than that in(FAPb I_(3))0.85(MAPbBr_(3)),indicating lower thermal dissipation in(FAPbI_(3))0.95(MAPbI_(3))0.05.Our results suggest that besides the smaller bandgap,the higher polaron mobility improved by the substitution engineering inα-FAPbI_(3)can also be an important factor for the high PCE of the black phaseα-FAPbI_(3)based solar cell devices.展开更多
The rapid development of low-bandgap(LBG)nonfullerene acceptors and wide-bandgap(WBG)copolymer donors in recent years has boosted the power conversion efficiency(PCE)of organic solar cells(OSCs)to the 18%level[1−21].T...The rapid development of low-bandgap(LBG)nonfullerene acceptors and wide-bandgap(WBG)copolymer donors in recent years has boosted the power conversion efficiency(PCE)of organic solar cells(OSCs)to the 18%level[1−21].The commercialization of OSCs is highly expected.However,critical issues like the cost and the stability also determine whether OSCs can enter the market or not[22].展开更多
Molybdenum oxide(MoO_(x))is a commonly used hole extraction material in organic photovoltaics.The MoO_(x) interlayer is deposited typically via thermal evaporation in vacuum.To meet the need for rollto-roll manufactur...Molybdenum oxide(MoO_(x))is a commonly used hole extraction material in organic photovoltaics.The MoO_(x) interlayer is deposited typically via thermal evaporation in vacuum.To meet the need for rollto-roll manufacturing,solution processing of MoO_(x) without post-annealing treatment is essential.Herein,we demonstrate an effective approach to produce annealing-free,alcohol-processable MoO_(x) anode interlayers,namely S-MoO_(x),by utilizing the bis(catecholato)diboron(B_(2) Cat_(2))molecule to modify the surface oxygen sites in MoO_(x).The formation of surface diboron-oxygen complex enables the alcohol solubility of S-MoO_(x).An enhanced light utilization is realized in the S-MoO_(x)-based organic photovoltaics.This affords a superior short-circuit current density(Jsc)close to 26 mA cm^(-2) and ultimately a high power-conversion efficiency(PCE)of 15.2%in the representative PM6:Y6 based inverted OPVs,which is one of the highest values in the inverted OPVs using an as-cast S-MoO_(x) anode interlayer.展开更多
Printable solar cells(including perovskite solar cells and organic photovoltaic cells,etc.)are manufactured based on soluble/dispersible semiconductor materials via printing technologies.They have unique advantages of...Printable solar cells(including perovskite solar cells and organic photovoltaic cells,etc.)are manufactured based on soluble/dispersible semiconductor materials via printing technologies.They have unique advantages of light weight,flexibility,adjustable color/transparency and low cost.In recent years,great breakthroughs have been made in the field of printable solar cells,and their energy conversion efficiency exceeds 25%,which is comparable to that of monocrystalline silicon solar cells.At present,this novel photovoltaic technology is expected to overcome the commercialization barrier.In this context,Materials Reports:Energy(MRE)specially planned a themed issue on printable solar cells.A number of high-quality papers are collected,aiming to introduce the latest progress in this field and provide a wide overview of theoretical and experimental progress and research results from materials to devices.展开更多
Hydrogen,meeting the requirements of sustainable development,is regarded as the ultimate energy in the 21st century.Due to the inexhaustible and feasible of solar energy,solar water splitting is an immensely promising...Hydrogen,meeting the requirements of sustainable development,is regarded as the ultimate energy in the 21st century.Due to the inexhaustible and feasible of solar energy,solar water splitting is an immensely promising strategy for environmental-friendly hydrogen production,which not only overcomes the fluctuation and intermittency but also contributes to achieving the mission of global“Carbon Neutrality and Carbon Peaking”.However,there is still a lack of a comprehensive overview focusing on hydrogen progress with a discussion of development from solar energy to solar cells.Herein,we emphasize several solar-to-hydrogen pathways from the basic concepts and principles and focus on photovoltaic-electrolysis and photoelectrochemical/photovoltaic systems,which have achieved solar-to-hydrogen(STH)efficiency of over 10%and have extremely promising for large-scale application.In addition,we summarize the challenges and opportunities faced in this field including configuration design,electrode materials,and performance evaluation.Finally,perspectives on the potential commercial application and scientific research for the further development of solar-to-hydrogen are analyzed and presented.展开更多
Ionic thermoelectricity(i-TE),as a new energy conversion and storage technology,has been widely discussed by the academic community.As one of the representatives of low-grade thermal energy recovery,i-TE has made rema...Ionic thermoelectricity(i-TE),as a new energy conversion and storage technology,has been widely discussed by the academic community.As one of the representatives of low-grade thermal energy recovery,i-TE has made remarkable progress and become an influential research direction in the energy field.Among them,thermoelectric ionogels have a wide range of applications in the field of energy recovery and utilization due to their excellent flexibility,stability,and thermoelectric conversion ability,providing many application possibilities for such materials.The development of highly efficient and stable ionic thermoelectric devices is largely dependent on the development of new materials and structural designs.This paper focuses on the recent strategies for improving the efficiency of thermoelectric conversion in the field of ionic thermoelectric gels,including new methods for material design,structural optimization,and innovative developments in the application of thermoelectric materials.The evaluation indicators of thermoelectric conversion efficiency are discussed,including ionic thermal voltage,ionic conductivity and power output,ductility,and self-healing properties.Additionally,various application devices based on thermoelectric materials with excellent thermoelectric conversion properties are highlighted.Further,different challenges and strategies that need to be addressed are presented in the hope of providing inspiration and guidance for the commercialization of i-TE.展开更多
Aqueous zinc ion batteries(AZIBs)have attracted much attention in recent years due to their high safety,low cost,and decent electrochemical performance.However,the traditional electrodes development process requires t...Aqueous zinc ion batteries(AZIBs)have attracted much attention in recent years due to their high safety,low cost,and decent electrochemical performance.However,the traditional electrodes development process requires tedious synthesis and testing procedures,which reduces the efficiency of developing highperformance battery devices.Here,we proposed a high-throughput screening strategy based on firstprinciples calculations to aid the experimental development of high-performance spinel cathode materials for AZIBs.We obtained 14 spinel materials from 12,047 Mn/Zn-O based materials by examining their structures and whether they satisfy the basic properties of electrodes.Then their band structures and density of states,open circuit voltage and volume expansion rate,ionic diffusion coefficient and energy barrier were further evaluated by first-principles calculations,resulting in five potential candidates.One of the promising candidates identified,Mg_(2)MnO_(4),was experimentally synthesized,characterized and integrated into an AZIB based cell to verify its performance as a cathode.The Mg_(2)MnO_(4)cathode exhibits excellent cycling stability,which is consistent with the theoretically predicted low volume expansion.Moreover,at high current density,the Mg_(2)MnO_(4)cathode still exhibits high reversible capacity and excellent rate performance,indicating that it is an excellent cathode material for AZIBs.Our work provides a new approach to accelerate the development of high-performance cathodes for AZIBs and other ion batteries.展开更多
In 1995,Yu et al.[1]first reported bulk-heterojunction(BHJ)solar cells with a conjugated polymer donor and a fullerene acceptor as the active materials.From then on,BHJ organic solar cells(OSCs)have attracted academic...In 1995,Yu et al.[1]first reported bulk-heterojunction(BHJ)solar cells with a conjugated polymer donor and a fullerene acceptor as the active materials.From then on,BHJ organic solar cells(OSCs)have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,17%power conversion efficiencies(PCEs)have been achieved in the state-of-the-art OSCs[2,3].The remarkable progress in OSCs relies on the continuously emerging new materials and device fabrication technologies,and the understanding on film morphology and device physics[4,5].展开更多
Nowadays,wide-bandgap(WBG)copolymers attract great attention in the field of organic photovoltaics[1].They are ideal electron-donating partners for low-bandgap small molecule acceptors[2-12].With good energy levels ma...Nowadays,wide-bandgap(WBG)copolymers attract great attention in the field of organic photovoltaics[1].They are ideal electron-donating partners for low-bandgap small molecule acceptors[2-12].With good energy levels matching,the blend of WBG copolymer donor and small molecule acceptor can harvest most of the sunlight and deliver high power conversion efficiencies(PCEs)in solar cells.PCEs higher than 16%have been achieved[13-15].WBG copolymers especially those with ultra-wide bandgaps(i.e.,optical bandgap(Eg opt)>2.07 eV,absorption onset<600 nm)can find applications in ternary solar cells[16]and tandem solar cells[17].Currently,ultra-WBG copolymer donors are less efficient,generally giving PCEs below 13%[18].Designing highly efficient ultra-WBG copolymers is needed.In this work,we use fluorine-and alkoxyl-substituted benzene(FAB)as the building block to construct ultra-WBG copolymer donors.展开更多
Organic solar cells have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,18%power conversion efficiency has been achieved in the sta...Organic solar cells have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,18%power conversion efficiency has been achieved in the state-of-the-art organic solar cells.The recent rapid progress in organic solar cells relies on the continuously emerging new materials and device fabrication technologies,and the deep understanding on film morphology,molecular packing and device physics.Donor and acceptor materials are the key materials for organic solar cells since they determine the device performance.The past 25 years have witnessed an odyssey in developing high-performance donors and acceptors.In this review,we focus on those star materials and milestone work,and introduce the molecular structure evolution of key materials.These key materials include homopolymer donors,D-A copolymer donors,A-D-A small molecular donors,fullerene acceptors and nonfullerene acceptors.At last,we outlook the challenges and very important directions in key materials development.展开更多
Since 1995,bulk-heterojunction organic solar cells consisting of one or two organic donors and one or two organic acceptors have been fighting for high power conversion efficiencies(PCEs)and good stability[1].Until re...Since 1995,bulk-heterojunction organic solar cells consisting of one or two organic donors and one or two organic acceptors have been fighting for high power conversion efficiencies(PCEs)and good stability[1].Until recent years,this next-generation photovoltaic technology starts to offer decent PCEs,shedding the light on commercialization,and attracting great attention again[2-14].Compared w让h the continuously emerging highperformance nonfullerene acceptors,high-performance donors are rare.展开更多
Owing to its nice performance, low cost, and simple solution-processing, organic-inorganic hybrid perovskite solar cell(PSC) becomes a promising candidate for next-generation high-efficiency solar cells.The power conv...Owing to its nice performance, low cost, and simple solution-processing, organic-inorganic hybrid perovskite solar cell(PSC) becomes a promising candidate for next-generation high-efficiency solar cells.The power conversion efficiency(PCE) has boosted from 3.8% to 25.2% over the past ten years. Despite the rapid progress in PCE, the device stability is a key issue that impedes the commercialization of PSCs. Recently, all-inorganic cesium lead halide perovskites have attracted much attention due to their better stability compared with their organic-inorganic counterpart. In this progress report, we summarize the properties of CsPb(IxBr1-x)3 and their applications in solar cells. The current challenges and corresponding solutions are discussed. Finally, we share our perspectives on CsPb(IxBr1-x)3 solar cells and outline possible directions to further improve the device performance.展开更多
Unlike organic–inorganic hybrid perovskites, all-inorganic cesium lead halide perovskites hold great promise for developing high-performance optoelectronic devices, owing to their improved stability. Herein, we inves...Unlike organic–inorganic hybrid perovskites, all-inorganic cesium lead halide perovskites hold great promise for developing high-performance optoelectronic devices, owing to their improved stability. Herein, we investigate the perovskite-related CsPb_2 Br_5 nanoplatelets(NPLs) with tunable emission wavelengths via changing the reaction temperatures to 100°C, 120°C, and 140°C. Reaction temperature plays a key role in determining the shapes and thicknesses of the resulting CsPb_2 Br_5 NPLs. A higher temperature is in favor of the formation of smaller and thicker NPLs. To develop their potential applications in optoelectronic devices, green light emitting diodes(LEDs) and photodetectors based on CsPb_2 Br_5 NPLs are fabricated. The green LEDs based on CsPb_2 Br_5 NPLs synthesized at 140°C exhibit an excellent pure green emission(full width at half-maximum of <20 nm) and display a luminous efficiency of 34.49 lm∕W under an operation current of 10 m A. Moreover, the photodetector based on CsPb_2 Br_5 NPLs synthesized at 100°C has better performance with a rise time of 0.426 s, a decay time of0.422 s, and a ratio of the current(with and without irradiation) of 364%.展开更多
Emerging needs for the large-scale industrialization of organic solar cells require high performance cathode interlayers to facilitate the charge extraction from organic semiconductors.In addition to improving the eff...Emerging needs for the large-scale industrialization of organic solar cells require high performance cathode interlayers to facilitate the charge extraction from organic semiconductors.In addition to improving the efficiency,stability and processability issues are major challenges.Herein,we design block copolymers with well controlled chemical composition and molecular weight for cathode interlayer applications.The block copolymer coated cathodes display high optical transmittance and low work function.Conductivity studies reveal that the block copolymer thin film has abundant conductive channels and excellent longitudinal electron conductivity due to the interpenetrating networks formed by the polymer blocks.Applications of the cathode interlayers in organic solar cells provide higher power conversion efficiency and better stability compared to the most widelyapplied ZnO counterparts.Furthermore,no post-treatment is needed which enables excellent processability of the block copolymer based cathode interlayer.展开更多
Long-term biopotential monitoring requires high-performance biocompatible wearable dry electrodes.But currently,it is challenging to establish a form-preserving fit with the skin,resulting in high interface impedance ...Long-term biopotential monitoring requires high-performance biocompatible wearable dry electrodes.But currently,it is challenging to establish a form-preserving fit with the skin,resulting in high interface impedance and motion artifacts.This research aims to present an innovative solution using an all-green organic dry electrode that eliminates the aforementioned challenges.The dry electrode is prepared by introducing biocompatible maltitol into the chosen conductive polymer,poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate).Thanks to the secondary doping and plasticizer effect of maltitol,the dry electrode exhibits good stretchability(62%),strong self-adhesion(0.46 N/cm),high conductivity(102 S/cm),and low Young's modulus(7 MPa).It can always form a conformal contact with the skin even during body movements.Together with good electrical properties,the electrode enables a lower skin contact impedance compared to the current standard Ag/AgCl gel electrode.Consequently,the application of this dry electrode in bioelectrical signal measurement(electromyography,electrocardiography,electroencephalogra-phy)and long-term biopotential monitoring was successfully demonstrated.展开更多
基金financially supported by research grants from the Natural Science Foundation of China [Grant No. 62074022 (K.S.), 12004057 (Y.J.Z.), 52173235 (M.L.)]the Natural Science Foundation of Chongqing [cstc2021jcyj-jqX0015 (K.S.)]+3 种基金Chongqing Talent Plan [cstc2021ycjh-bgzxm0334 (S.S.C.), CQYC2021059206 (K.S.)]Fundamental Research Funds for the Central Universities [No. 2020CDJQY-A055 (K.S.)]the Key Laboratory of Low-grade Energy Utilization Technologies and Systems [Grant No. LLEUTS-201901 (K.S.)]support from Chongqing Postgraduate Research and Innovation Project (CYS22032)。
文摘Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the utilization of i-TE is currently based on capacitive charge/discharge, which results in discontinuous working mode and low energy density. Here,we introduce an ion–electron thermoelectric synergistic(IETS)effect by utilizing an ion–electron conductor. Electrons/holes can drift under the electric field generated by thermodiffusion of ions, thus converting the ionic current into electrical current that can pass through the external circuit. Due to the IETS effect, i-TE is able to operate continuously for over 3000 min.Moreover, our i-TE exhibits a thermopower of 32.7 mV K^(-1) and an energy density of 553.9 J m^(-2), which is more than 6.9 times of the highest reported value. Consequently, direct powering of electronics is achieved with i-TE. This work provides a novel strategy for the design of high-performance i-TE materials.
基金supported by the National Natural Science Foundation of China(Nos.92050203,61905264,61925507,61875211,61674023,62005296,and 62105347)the National Key R&D Program of China 2017YFE0123700+1 种基金Shanghai Pilot Program for Basic Research(22JC1403200)the CAS Interdisciplinary Innovation Team。
文摘Lead halide hybrid perovskites(LHP)have emerged as one of the most promising photovoltaic materials for their remarkable solar energy conversion ability.The transportation of the photoinduced carriers in LHP could screen the defect recombination with the help of the large polaron formation.However,the physical insight of the relationship between the superior optical-electronic performance of perovskite and its polaron dynamics related to the electron-lattice strong coupling induced by the substitution engineering is still lack of investigation.Here,the bandgap modulated thin films ofα-FAPbI_(3)with different element substitution is investigated by the time resolved Terahertz spectroscopy.We find the polaron recombination dynamics could be prolonged in LHP with a relatively smaller bandgap,even though the formation of polaron will not be affected apparently.Intuitively,the large polaron mobility in(FAPb I_(3))0.95(MAPbI_(3))0.05thin film is~30%larger than that in(FAPb I_(3))0.85(MAPbBr_(3))0.15.The larger mobility in(FAPb I_(3))0.95(MAPb I_(3))0.05could be assigned to the slowing down of the carrier scattering time.Therefore,the physical origin of the higher carrier mobility in the(FAPb I_(3))0.95(MAPbI_(3))0.05should be related with the lattice distortion and enhanced electron–phonon coupling induced by the substitution.In addition,(FAPbI_(3))0.95(MAPbI_(3))0.05will lose fewer active carriers during the polaron cooling process than that in(FAPb I_(3))0.85(MAPbBr_(3)),indicating lower thermal dissipation in(FAPbI_(3))0.95(MAPbI_(3))0.05.Our results suggest that besides the smaller bandgap,the higher polaron mobility improved by the substitution engineering inα-FAPbI_(3)can also be an important factor for the high PCE of the black phaseα-FAPbI_(3)based solar cell devices.
基金We thank the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720,62074022)+1 种基金Fundamental Research Funds for the Central Universities(2020CDJQY-A055)the Youth Association for Promoting Innovation(CAS)for financial support.
文摘The rapid development of low-bandgap(LBG)nonfullerene acceptors and wide-bandgap(WBG)copolymer donors in recent years has boosted the power conversion efficiency(PCE)of organic solar cells(OSCs)to the 18%level[1−21].The commercialization of OSCs is highly expected.However,critical issues like the cost and the stability also determine whether OSCs can enter the market or not[22].
基金supported by the National Natural Science Foundation of China(62074022,62074149)the Natural Science Foundation of Chongqing(cstc2018jszx-cyzdX0137)+3 种基金the Chongqing Science Foundation for Distinguished Young Scholars(cstc2020jcyj-jq0112)the“Artificial Intelligence”Key Project of Chongqing(cstc2017rgzn-zdyf0120)the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2019107)the Fundamental Research Funds for the Central Universities(2020CDJQY-A055,2019CDXYDL0007)。
文摘Molybdenum oxide(MoO_(x))is a commonly used hole extraction material in organic photovoltaics.The MoO_(x) interlayer is deposited typically via thermal evaporation in vacuum.To meet the need for rollto-roll manufacturing,solution processing of MoO_(x) without post-annealing treatment is essential.Herein,we demonstrate an effective approach to produce annealing-free,alcohol-processable MoO_(x) anode interlayers,namely S-MoO_(x),by utilizing the bis(catecholato)diboron(B_(2) Cat_(2))molecule to modify the surface oxygen sites in MoO_(x).The formation of surface diboron-oxygen complex enables the alcohol solubility of S-MoO_(x).An enhanced light utilization is realized in the S-MoO_(x)-based organic photovoltaics.This affords a superior short-circuit current density(Jsc)close to 26 mA cm^(-2) and ultimately a high power-conversion efficiency(PCE)of 15.2%in the representative PM6:Y6 based inverted OPVs,which is one of the highest values in the inverted OPVs using an as-cast S-MoO_(x) anode interlayer.
文摘Printable solar cells(including perovskite solar cells and organic photovoltaic cells,etc.)are manufactured based on soluble/dispersible semiconductor materials via printing technologies.They have unique advantages of light weight,flexibility,adjustable color/transparency and low cost.In recent years,great breakthroughs have been made in the field of printable solar cells,and their energy conversion efficiency exceeds 25%,which is comparable to that of monocrystalline silicon solar cells.At present,this novel photovoltaic technology is expected to overcome the commercialization barrier.In this context,Materials Reports:Energy(MRE)specially planned a themed issue on printable solar cells.A number of high-quality papers are collected,aiming to introduce the latest progress in this field and provide a wide overview of theoretical and experimental progress and research results from materials to devices.
基金financial support from the Sichuan Science and Technology Program(No.2022NSFSC0226)Open Fund(PLN2021–17)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)Science and Technology Project of Southwest Petroleum University(No.2021JBGS08).
文摘Hydrogen,meeting the requirements of sustainable development,is regarded as the ultimate energy in the 21st century.Due to the inexhaustible and feasible of solar energy,solar water splitting is an immensely promising strategy for environmental-friendly hydrogen production,which not only overcomes the fluctuation and intermittency but also contributes to achieving the mission of global“Carbon Neutrality and Carbon Peaking”.However,there is still a lack of a comprehensive overview focusing on hydrogen progress with a discussion of development from solar energy to solar cells.Herein,we emphasize several solar-to-hydrogen pathways from the basic concepts and principles and focus on photovoltaic-electrolysis and photoelectrochemical/photovoltaic systems,which have achieved solar-to-hydrogen(STH)efficiency of over 10%and have extremely promising for large-scale application.In addition,we summarize the challenges and opportunities faced in this field including configuration design,electrode materials,and performance evaluation.Finally,perspectives on the potential commercial application and scientific research for the further development of solar-to-hydrogen are analyzed and presented.
基金supported by research grants from the National Key R&D Program of China(grant no.2023YFB4704000)National Natural Science Foundation of China(NSFC+3 种基金grant no.52203211)Fundamental Research Funds for the Central Universities,China(grant no.2024CDJZCQ-005)Exceptional Young Talents Project(grant no.cstc2021ycjh-bgzxm0334)Financial support(grant no.IDH2203003Y)from Fudan University。
文摘Ionic thermoelectricity(i-TE),as a new energy conversion and storage technology,has been widely discussed by the academic community.As one of the representatives of low-grade thermal energy recovery,i-TE has made remarkable progress and become an influential research direction in the energy field.Among them,thermoelectric ionogels have a wide range of applications in the field of energy recovery and utilization due to their excellent flexibility,stability,and thermoelectric conversion ability,providing many application possibilities for such materials.The development of highly efficient and stable ionic thermoelectric devices is largely dependent on the development of new materials and structural designs.This paper focuses on the recent strategies for improving the efficiency of thermoelectric conversion in the field of ionic thermoelectric gels,including new methods for material design,structural optimization,and innovative developments in the application of thermoelectric materials.The evaluation indicators of thermoelectric conversion efficiency are discussed,including ionic thermal voltage,ionic conductivity and power output,ductility,and self-healing properties.Additionally,various application devices based on thermoelectric materials with excellent thermoelectric conversion properties are highlighted.Further,different challenges and strategies that need to be addressed are presented in the hope of providing inspiration and guidance for the commercialization of i-TE.
基金This work was financially supported by research grants from the Natural Science Foundation of China(Nos.12004057,62074022,52173235)Support plan for Overseas Students to Return to China for Entrepreneurship and Innovation(No.cx2020075)+3 种基金Open Fund of Key Laboratory of Low-grade Energy Utilization Technologies and Systems(No.LLEUTS-2020008)Chongqing Funds for Distinguished Young Scientists(No.cstc2021jcyj-jqX0015)Chongqing Talent Plan(No.CQYC2021059206)Fundamental Research Funds for the Central Universities(No.2020CDJQY-A055).
文摘Aqueous zinc ion batteries(AZIBs)have attracted much attention in recent years due to their high safety,low cost,and decent electrochemical performance.However,the traditional electrodes development process requires tedious synthesis and testing procedures,which reduces the efficiency of developing highperformance battery devices.Here,we proposed a high-throughput screening strategy based on firstprinciples calculations to aid the experimental development of high-performance spinel cathode materials for AZIBs.We obtained 14 spinel materials from 12,047 Mn/Zn-O based materials by examining their structures and whether they satisfy the basic properties of electrodes.Then their band structures and density of states,open circuit voltage and volume expansion rate,ionic diffusion coefficient and energy barrier were further evaluated by first-principles calculations,resulting in five potential candidates.One of the promising candidates identified,Mg_(2)MnO_(4),was experimentally synthesized,characterized and integrated into an AZIB based cell to verify its performance as a cathode.The Mg_(2)MnO_(4)cathode exhibits excellent cycling stability,which is consistent with the theoretically predicted low volume expansion.Moreover,at high current density,the Mg_(2)MnO_(4)cathode still exhibits high reversible capacity and excellent rate performance,indicating that it is an excellent cathode material for AZIBs.Our work provides a new approach to accelerate the development of high-performance cathodes for AZIBs and other ion batteries.
基金the National Key Research and Development Program of China (2017YFA0206600)the National Natural Science Foundation of China (51773045, 21572041, 21772030 and 51922032)the Youth Association for Promoting Innovation (CAS) for financial support.
文摘In 1995,Yu et al.[1]first reported bulk-heterojunction(BHJ)solar cells with a conjugated polymer donor and a fullerene acceptor as the active materials.From then on,BHJ organic solar cells(OSCs)have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,17%power conversion efficiencies(PCEs)have been achieved in the state-of-the-art OSCs[2,3].The remarkable progress in OSCs relies on the continuously emerging new materials and device fabrication technologies,and the understanding on film morphology and device physics[4,5].
基金the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21572041,21772030 and 51922032)the Youth Association for Promoting Innovation(CAS)for financial support
文摘Nowadays,wide-bandgap(WBG)copolymers attract great attention in the field of organic photovoltaics[1].They are ideal electron-donating partners for low-bandgap small molecule acceptors[2-12].With good energy levels matching,the blend of WBG copolymer donor and small molecule acceptor can harvest most of the sunlight and deliver high power conversion efficiencies(PCEs)in solar cells.PCEs higher than 16%have been achieved[13-15].WBG copolymers especially those with ultra-wide bandgaps(i.e.,optical bandgap(Eg opt)>2.07 eV,absorption onset<600 nm)can find applications in ternary solar cells[16]and tandem solar cells[17].Currently,ultra-WBG copolymer donors are less efficient,generally giving PCEs below 13%[18].Designing highly efficient ultra-WBG copolymers is needed.In this work,we use fluorine-and alkoxyl-substituted benzene(FAB)as the building block to construct ultra-WBG copolymer donors.
基金supported by the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720)。
文摘Organic solar cells have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,18%power conversion efficiency has been achieved in the state-of-the-art organic solar cells.The recent rapid progress in organic solar cells relies on the continuously emerging new materials and device fabrication technologies,and the deep understanding on film morphology,molecular packing and device physics.Donor and acceptor materials are the key materials for organic solar cells since they determine the device performance.The past 25 years have witnessed an odyssey in developing high-performance donors and acceptors.In this review,we focus on those star materials and milestone work,and introduce the molecular structure evolution of key materials.These key materials include homopolymer donors,D-A copolymer donors,A-D-A small molecular donors,fullerene acceptors and nonfullerene acceptors.At last,we outlook the challenges and very important directions in key materials development.
基金the National Key Research and Development Program of China (2017YFA0206600)the National Natural Science Foundation of China (51773045, 21772030, 51922032 and 21961160720)+1 种基金Fundamental Research Funds for the Central Universities (2020CDJQY-A055)the Youth Association for Promoting Innovation (CAS) for financial support。
基金the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21572041,21772030 and 51922032)the Youth Association for Promoting Innovation(CAS)for financial support
文摘Since 1995,bulk-heterojunction organic solar cells consisting of one or two organic donors and one or two organic acceptors have been fighting for high power conversion efficiencies(PCEs)and good stability[1].Until recent years,this next-generation photovoltaic technology starts to offer decent PCEs,shedding the light on commercialization,and attracting great attention again[2-14].Compared w让h the continuously emerging highperformance nonfullerene acceptors,high-performance donors are rare.
基金the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21572041 and 21772030)for the financial support
文摘Owing to its nice performance, low cost, and simple solution-processing, organic-inorganic hybrid perovskite solar cell(PSC) becomes a promising candidate for next-generation high-efficiency solar cells.The power conversion efficiency(PCE) has boosted from 3.8% to 25.2% over the past ten years. Despite the rapid progress in PCE, the device stability is a key issue that impedes the commercialization of PSCs. Recently, all-inorganic cesium lead halide perovskites have attracted much attention due to their better stability compared with their organic-inorganic counterpart. In this progress report, we summarize the properties of CsPb(IxBr1-x)3 and their applications in solar cells. The current challenges and corresponding solutions are discussed. Finally, we share our perspectives on CsPb(IxBr1-x)3 solar cells and outline possible directions to further improve the device performance.
基金National Natural Science Foundation of China(NSFC)(61404017)Natural Science Foundation of Chongqing(cstc2017jcyj B0273)Chongqing Postdoctoral Science Research Special Funded Project(Xm2016017)
文摘Unlike organic–inorganic hybrid perovskites, all-inorganic cesium lead halide perovskites hold great promise for developing high-performance optoelectronic devices, owing to their improved stability. Herein, we investigate the perovskite-related CsPb_2 Br_5 nanoplatelets(NPLs) with tunable emission wavelengths via changing the reaction temperatures to 100°C, 120°C, and 140°C. Reaction temperature plays a key role in determining the shapes and thicknesses of the resulting CsPb_2 Br_5 NPLs. A higher temperature is in favor of the formation of smaller and thicker NPLs. To develop their potential applications in optoelectronic devices, green light emitting diodes(LEDs) and photodetectors based on CsPb_2 Br_5 NPLs are fabricated. The green LEDs based on CsPb_2 Br_5 NPLs synthesized at 140°C exhibit an excellent pure green emission(full width at half-maximum of <20 nm) and display a luminous efficiency of 34.49 lm∕W under an operation current of 10 m A. Moreover, the photodetector based on CsPb_2 Br_5 NPLs synthesized at 100°C has better performance with a rise time of 0.426 s, a decay time of0.422 s, and a ratio of the current(with and without irradiation) of 364%.
基金financially supported by research grants from the National Natural Science Foundation of China(Grant Nos.21801238 and 61504015)National Youth Thousand Program Project(Grant No.R52A199Z11)+6 种基金CAS Pioneer Hundred Talents Program B(Grant No.Y92A010Q10)National Special Funds for Repairing and Purchasing Scientific Institutions(Grant No.Y72Z090Q10)the Natural Science Foundation of Chongqing(Grant Nos.cstc2017jcyjA0752,cstc2018jcyjAX0556,cstc2017jcy-jAX0384,and cstc2018jszx-cyzdX0137)the“artificial intelligence”key project of Chongqing(Grant No.cstc2017rgznzdyfX0030)the Key Laboratory of Low-grade Energy Utilization Technologies and Systems(Grant Nos.LLEUTS-2017004,LLEUTS-2019001)the Venture&Innovation Support Program for Chongqing Overseas Returnees(Grant Nos.cx2017034 and cx2019028)Chongqing Talents Top Youth Talent Program(Grant No.CQYC201905057).
文摘Emerging needs for the large-scale industrialization of organic solar cells require high performance cathode interlayers to facilitate the charge extraction from organic semiconductors.In addition to improving the efficiency,stability and processability issues are major challenges.Herein,we design block copolymers with well controlled chemical composition and molecular weight for cathode interlayer applications.The block copolymer coated cathodes display high optical transmittance and low work function.Conductivity studies reveal that the block copolymer thin film has abundant conductive channels and excellent longitudinal electron conductivity due to the interpenetrating networks formed by the polymer blocks.Applications of the cathode interlayers in organic solar cells provide higher power conversion efficiency and better stability compared to the most widelyapplied ZnO counterparts.Furthermore,no post-treatment is needed which enables excellent processability of the block copolymer based cathode interlayer.
基金Chongqing Funds for Distinguished Young Scientists,Grant/Award Number:cstc2021jcyj-jqX0033Key Laboratory of Flexible Electronics of Zhejiang Province,Grant/Award Number:2022FE003+4 种基金Youth Talent Support Program of Chongqing,Grant/Award Numbers:CQYC2021059206,cstc2021ycjhbgzxm0334National Key Research and Development Program of China,Grant/Award Number:2022YFB3803300National Natural Science Foundation of China,Grant/Award Numbers:52203211,62074022Natural Science Foundation of Chongqing Municipality,Grant/Award Number:cstc2020jcyjmsxmX0851High-Level Medical Reserved Personnel Training Project of Chongqing,Grant/Award Number:2020GDRC019。
文摘Long-term biopotential monitoring requires high-performance biocompatible wearable dry electrodes.But currently,it is challenging to establish a form-preserving fit with the skin,resulting in high interface impedance and motion artifacts.This research aims to present an innovative solution using an all-green organic dry electrode that eliminates the aforementioned challenges.The dry electrode is prepared by introducing biocompatible maltitol into the chosen conductive polymer,poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate).Thanks to the secondary doping and plasticizer effect of maltitol,the dry electrode exhibits good stretchability(62%),strong self-adhesion(0.46 N/cm),high conductivity(102 S/cm),and low Young's modulus(7 MPa).It can always form a conformal contact with the skin even during body movements.Together with good electrical properties,the electrode enables a lower skin contact impedance compared to the current standard Ag/AgCl gel electrode.Consequently,the application of this dry electrode in bioelectrical signal measurement(electromyography,electrocardiography,electroencephalogra-phy)and long-term biopotential monitoring was successfully demonstrated.