High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high vo...High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries.展开更多
Lithium-metal battery based on Ni-rich cathode provides high energy density but presents poor cyclic stability due to the unstable electrode/electrolyte interfaces on both cathode and anode.In this work,we report a ne...Lithium-metal battery based on Ni-rich cathode provides high energy density but presents poor cyclic stability due to the unstable electrode/electrolyte interfaces on both cathode and anode.In this work,we report a new strategy to address this issue.It is found that the cyclic stability of Ni-rich/Li battery can be significantly improved by using succinic anhydride(SA) as an electrolyte additive.Specifically,the capacity retention of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)/Li cell is improved from 14% to 83% after 200cycles at 1 C between 3.0 and 4.35 V by applying 5% SA.The underlying mechanism of SA contribution is understood by comparing the effects of malic anhydride(MA) and citraconic anhydride(CA), both of which share a similar molecular structure to SA but show different effects.On anode side,SA can but MA and CA cannot form a protective solid electrolyte interphase(SEI) on Li anode.On cathode side,three anhydrides can suppress the formation of hydrogen fluoride from electrolyte oxidation decomposition,but SA behaves best.Typically,MA shows adverse effects on the interface stability of Li anode and NCM811 cathode,which originates from its high acidity.Though the acidity of MA can be mitigated by substituting a methyl for one H atom at its C=C bond,the substituent CA cannot compete with SA in cyclic stability improvement of the cell,because the SEI resulting from CA is not as robust as that from SA,which is related to the binding energy of the SEI components.This understanding reveals the importance of the electrolyte acidity on the Ni-rich cathode and the robustness of the SEI on Li anode,which is helpful for rationally designing new electrolyte additives to further improve the cyclic stability of high-energydensity Ni-rich/Li batteries.展开更多
In this study, we show that the percutaneous absorption and brain distribution of tetramethylpyrazine(TMP) is enhanced when combined with borneol(BN) in a microemulsionbased transdermal therapeutic system(ME-TTS). The...In this study, we show that the percutaneous absorption and brain distribution of tetramethylpyrazine(TMP) is enhanced when combined with borneol(BN) in a microemulsionbased transdermal therapeutic system(ME-TTS). The formulation of the TMP and BN microemulsion(TEM-BN-ME) was optimized in skin permeation studies in vitro following a uniform experimental design. Male Sprague-Dawley rats were used for the in vivo pharmacokinetic and tissue distribution studies of TMP-BN-ME-TTS. In the pharmacokinetic study, the TMP-BN-ME-TTS treated rats had significantly higher( P < 0.05) C max and AUC of TMP than the TMP-ME-TTS treated rats, indicating that BN improves the rate and extent of TMP percutaneous absorption. In the tissue distribution study, the AUC of TMP in brain was significantly higher in the TMP-BN-ME-TTS group( P < 0.05), indicating that BN facilitates the distribution of TMP in brain. In summary, BN enhanced the percutaneous absorption and brain distribution of TMP in a microemulsion-based transdermal therapeutic system.展开更多
In recent years,with the development of processor architecture,heterogeneous processors including Center processing unit(CPU)and Graphics processing unit(GPU)have become the mainstream.However,due to the differences o...In recent years,with the development of processor architecture,heterogeneous processors including Center processing unit(CPU)and Graphics processing unit(GPU)have become the mainstream.However,due to the differences of heterogeneous core,the heterogeneous system is now facing many problems that need to be solved.In order to solve these problems,this paper try to focus on the utilization and efficiency of heterogeneous core and design some reasonable resource scheduling strategies.To improve the performance of the system,this paper proposes a combination strategy for a single task and a multi-task scheduling strategy for multiple tasks.The combination strategy consists of two sub-strategies,the first strategy improves the execution efficiency of tasks on the GPU by changing the thread organization structure.The second focuses on the working state of the efficient core and develops more reasonable workload balancing schemes to improve resource utilization of heterogeneous systems.The multi-task scheduling strategy obtains the execution efficiency of heterogeneous cores and global task information through the processing of task samples.Based on this information,an improved ant colony algorithm is used to quickly obtain a reasonable task allocation scheme,which fully utilizes the characteristics of heterogeneous cores.The experimental results show that the combination strategy reduces task execution time by 29.13%on average.In the case of processing multiple tasks,the multi-task scheduling strategy reduces the execution time by up to 23.38%based on the combined strategy.Both strategies can make better use of the resources of heterogeneous systems and significantly reduce the execution time of tasks on heterogeneous systems.展开更多
Protein-biomolecule interactions play pivotal roles in almost all biological processes.For a biomolecule of interest,the identification of the interacting protein(s)is essential.For this need,although many assays are ...Protein-biomolecule interactions play pivotal roles in almost all biological processes.For a biomolecule of interest,the identification of the interacting protein(s)is essential.For this need,although many assays are available,highly robust and reliable methods are always desired.By combining a substrate-based proximity labeling activity from the pupylation pathway of Mycobacterium tuberculosis and the streptavidin(SA)-biotin system,we developed the Specific Pupylation as IDEntity Reporter(SPIDER)method for identifying protein-biomolecule interactions.Using SPIDER,we validated the interactions between the known binding proteins of protein,DNA,RNA,and small molecule.We successfully applied SPIDER to construct the global protein interactome for m^(6)A and m RNA,identified a variety of uncharacterized m^(6)A binding proteins,and validated SRSF7 as a potential m^(6)A reader.We globally identified the binding proteins for lenalidomide and Cob B.Moreover,we identified SARS-CoV-2-specific receptors on the cell membrane.Overall,SPIDER is powerful and highly accessible for the study of proteinbiomolecule interactions.展开更多
基金supported by the National Natural Science Foundation of China(22179041)。
文摘High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries.
基金supported by the National Natural Science Foundation of China(Grant No.21872058)。
文摘Lithium-metal battery based on Ni-rich cathode provides high energy density but presents poor cyclic stability due to the unstable electrode/electrolyte interfaces on both cathode and anode.In this work,we report a new strategy to address this issue.It is found that the cyclic stability of Ni-rich/Li battery can be significantly improved by using succinic anhydride(SA) as an electrolyte additive.Specifically,the capacity retention of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)/Li cell is improved from 14% to 83% after 200cycles at 1 C between 3.0 and 4.35 V by applying 5% SA.The underlying mechanism of SA contribution is understood by comparing the effects of malic anhydride(MA) and citraconic anhydride(CA), both of which share a similar molecular structure to SA but show different effects.On anode side,SA can but MA and CA cannot form a protective solid electrolyte interphase(SEI) on Li anode.On cathode side,three anhydrides can suppress the formation of hydrogen fluoride from electrolyte oxidation decomposition,but SA behaves best.Typically,MA shows adverse effects on the interface stability of Li anode and NCM811 cathode,which originates from its high acidity.Though the acidity of MA can be mitigated by substituting a methyl for one H atom at its C=C bond,the substituent CA cannot compete with SA in cyclic stability improvement of the cell,because the SEI resulting from CA is not as robust as that from SA,which is related to the binding energy of the SEI components.This understanding reveals the importance of the electrolyte acidity on the Ni-rich cathode and the robustness of the SEI on Li anode,which is helpful for rationally designing new electrolyte additives to further improve the cyclic stability of high-energydensity Ni-rich/Li batteries.
基金supported by the Program from Shanghai Uni-versity of Traditional Chinese Medicine(B201725)
文摘In this study, we show that the percutaneous absorption and brain distribution of tetramethylpyrazine(TMP) is enhanced when combined with borneol(BN) in a microemulsionbased transdermal therapeutic system(ME-TTS). The formulation of the TMP and BN microemulsion(TEM-BN-ME) was optimized in skin permeation studies in vitro following a uniform experimental design. Male Sprague-Dawley rats were used for the in vivo pharmacokinetic and tissue distribution studies of TMP-BN-ME-TTS. In the pharmacokinetic study, the TMP-BN-ME-TTS treated rats had significantly higher( P < 0.05) C max and AUC of TMP than the TMP-ME-TTS treated rats, indicating that BN improves the rate and extent of TMP percutaneous absorption. In the tissue distribution study, the AUC of TMP in brain was significantly higher in the TMP-BN-ME-TTS group( P < 0.05), indicating that BN facilitates the distribution of TMP in brain. In summary, BN enhanced the percutaneous absorption and brain distribution of TMP in a microemulsion-based transdermal therapeutic system.
基金This work is supported by Beijing Natural Science Foundation[4192007]the National Natural Science Foundation of China[61202076]Beijing University of Technology Project No.2021C02.
文摘In recent years,with the development of processor architecture,heterogeneous processors including Center processing unit(CPU)and Graphics processing unit(GPU)have become the mainstream.However,due to the differences of heterogeneous core,the heterogeneous system is now facing many problems that need to be solved.In order to solve these problems,this paper try to focus on the utilization and efficiency of heterogeneous core and design some reasonable resource scheduling strategies.To improve the performance of the system,this paper proposes a combination strategy for a single task and a multi-task scheduling strategy for multiple tasks.The combination strategy consists of two sub-strategies,the first strategy improves the execution efficiency of tasks on the GPU by changing the thread organization structure.The second focuses on the working state of the efficient core and develops more reasonable workload balancing schemes to improve resource utilization of heterogeneous systems.The multi-task scheduling strategy obtains the execution efficiency of heterogeneous cores and global task information through the processing of task samples.Based on this information,an improved ant colony algorithm is used to quickly obtain a reasonable task allocation scheme,which fully utilizes the characteristics of heterogeneous cores.The experimental results show that the combination strategy reduces task execution time by 29.13%on average.In the case of processing multiple tasks,the multi-task scheduling strategy reduces the execution time by up to 23.38%based on the combined strategy.Both strategies can make better use of the resources of heterogeneous systems and significantly reduce the execution time of tasks on heterogeneous systems.
基金supported by the National Key Research and Development Program of China(2020YFE0202200)the National Natural Science Foundation of China(31900112,21907065,31970130 and 31670831)。
文摘Protein-biomolecule interactions play pivotal roles in almost all biological processes.For a biomolecule of interest,the identification of the interacting protein(s)is essential.For this need,although many assays are available,highly robust and reliable methods are always desired.By combining a substrate-based proximity labeling activity from the pupylation pathway of Mycobacterium tuberculosis and the streptavidin(SA)-biotin system,we developed the Specific Pupylation as IDEntity Reporter(SPIDER)method for identifying protein-biomolecule interactions.Using SPIDER,we validated the interactions between the known binding proteins of protein,DNA,RNA,and small molecule.We successfully applied SPIDER to construct the global protein interactome for m^(6)A and m RNA,identified a variety of uncharacterized m^(6)A binding proteins,and validated SRSF7 as a potential m^(6)A reader.We globally identified the binding proteins for lenalidomide and Cob B.Moreover,we identified SARS-CoV-2-specific receptors on the cell membrane.Overall,SPIDER is powerful and highly accessible for the study of proteinbiomolecule interactions.