Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electr...Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electrocatalysts remains a formidable challenge.Here,an electrochemical activation strategy with selective etching was utilized to guide the reconstruction process of a hybrid cobalt-molybdenum oxide(CoMoO_(4)/Co_(3)O_(4)@CC)in a favorable direction to improve the OER performance.Both in-situ Raman and multiple ex-situ characterization tools demonstrate that controlled surface reconstruction can be easily achieved through Mo etching,with the formation of a dynamically stable amorphous-crystalline heterostructure.Theoretical calculations together with experimental results reveal that the synergistic effects between amorphous CoOOH and crystalline Co_(3)O_(4) are crucial in enhancing the catalytic performance.Consequently,the reconstructed CoMoO_(4)/Co_(3)O_(4)@CC exhibits a low overpotential of 250 mV to achieve a current density of 10 mA cm^(-2) in 1 M KOH,and more importantly it can be practiced in electrolytic water splitting and rechargeable zinc-air batteries devices,achieving ultra-long stability for over 500 and 1200 h,respectively.This work provides a promising route for the construction of high-performance electrocatalysts.展开更多
Developing high-performing oxygen evolution reaction(OER)electrocatalysts under high-current operation conditions is critical for future commercial applications of alkaline water electrolysis for clean energy generati...Developing high-performing oxygen evolution reaction(OER)electrocatalysts under high-current operation conditions is critical for future commercial applications of alkaline water electrolysis for clean energy generation.Herein,we prepared a three-dimensional(3D)bimetallic oxyhydroxide hybrid grown on a Ni foam(NiFeOOH/NF)prepared by immersing Ni foam(NF)into Fe(NO_(3))_(3) solution.In this unique 3D structure,the NiFeOOH/NF hybrid was composed of crystalline Ni(OH)_(2) and amorphous FeOOH evenly grown on the NF surface.As a bimetallic oxyhydroxide electrocatalyst,the NiFeOOH/NF hybrid exhibited excellent catalytic activity,surpassing not only the other reported Ni–Fe based electrocatalysts,but also the commercial Ir/C catalyst.In situ electrochemical Raman spectroscopy demonstrated the active FeOOH and NiOOH phases involved in the OER process.Profiting from the synergy of Fe and Ni catalytic sites,the NiFeOOH/NF hybrid delivered an outstanding OER performance under challenging industrial conditions in a 10.0 mol·L^(-1) KOH electrolyte at 80℃,requiring potentials as small as 1.47 and 1.51 V to achieve the super-high catalytic current densities of 100 and 500mA∙cm^(-2),respectively.展开更多
In order to reduce the influence of impurities in hemihydrate phosphogypsum(HPG)on the environment and improve the workability of HPG,the effects of the content of quicklime and types of biopolymer(hydroxypropyl methy...In order to reduce the influence of impurities in hemihydrate phosphogypsum(HPG)on the environment and improve the workability of HPG,the effects of the content of quicklime and types of biopolymer(hydroxypropyl methylcellulose,xanthan gum,sodium polyacrylate(PAANa))on the compressive strength,softening coefficient and ultrasonic velocity of HPG were evaluated.When the content of quicklime was 1.5%and the content of PAA-Na was 0.2%,HPG had the best mechanical properties and workability,its water retention rate can be increased by 5.8%,and unconfined compressive strength of 3 days increased by 10.3%and 7 days increased by 13.1%.Through the analysis of scanning electron microscope and X-ray diffraction,it was found that the hydration reac-tion of HPG was more sufficient,the pores size and number decreased,the number of impurities on the crystal surface decreased obviously,and CaF2 and other substances were formed by the reaction after the addition of quicklime.After adding quicklime and PAANa,the indicators of gypsum self-leveling mortar prepared by HPG meet the requirements of the standard.展开更多
Both boron nitride(BN)and carbon(C)have sp,sp^(2)and sp^(3)hybridization modes,thus resulting in a variety of BN and C polymorphs with similar structures,such as hexagonal BN(hBN)and graphite,cubic BN(cBN)and diamond....Both boron nitride(BN)and carbon(C)have sp,sp^(2)and sp^(3)hybridization modes,thus resulting in a variety of BN and C polymorphs with similar structures,such as hexagonal BN(hBN)and graphite,cubic BN(cBN)and diamond.Here,five types of BN polymorph structures are proposed theoretically,inspired by the graphite-diamond hybrid structures discovered in a recent experiment.These BN polymorphs with graphite-diamond hybrid structures possess excellent mechanical properties with combined high hardness and high ductility,and also exhibit various electronic properties such as semi-conductivity,semi-metallicity,and even one-and two-dimensional conductivity,differing from known insulators hBN and cBN.The simulated diffraction patterns of these BN hybrid structures could account for the unsolved diffraction patterns of intermediate products composed of so-called“compressed hBN”and diamond-like BN,caused by phase transitions in previous experiments.Thus,this work provides a theoretical basis for the presence of these types of hybrid materials during phase transitions between graphite-like and diamond-like BN polymorphs.展开更多
A series of 2D direct numerical simulations were performed with an accurate level set method for single drop impacts.The adopted ACLS method was validated to be efficient with perfect mass conservation in both normal ...A series of 2D direct numerical simulations were performed with an accurate level set method for single drop impacts.The adopted ACLS method was validated to be efficient with perfect mass conservation in both normal and oblique impacts.A square-root correction for neck bases was modified in accuracy as well as scope of applications.In addition,process of jet formation and evolution was studied to reveal internal dynamics in drop impacts.It's found that pressure gradient and vortex are coexisting and completive reasons for jet topology while the inclined angle has a significant effect on them.Mechanisms of jet formation and evolution are different in the front and back necks.With the help of PDF distribution and correction calculation,a compromise in the competition is observed.This work lays a solid foundation for further studies of dynamics in gas-liquid flows.展开更多
Helical edge states are the hallmark of the quantum spin Hall insulator. Recently, several experiments have observed transport signatures contributed by trivial edge states, making it difficult to distinguish between ...Helical edge states are the hallmark of the quantum spin Hall insulator. Recently, several experiments have observed transport signatures contributed by trivial edge states, making it difficult to distinguish between the topologically trivial and nontrivial phases. Here, we show that helical edge states can be identified by the randomgate-voltage induced Φ_(0)/2-period oscillation of the averaged electron return probability in the interferometer constructed by the edge states. The random gate voltage can highlight the Φ_(0)/2-period Al'tshuler–Aronov–Spivak oscillation proportional to sin^(2)(2πΦ/Φ_(0)) by quenching the Φ_(0)-period Aharonov–Bohm oscillation. It is found that the helical spin texture induced π Berry phase is key to such weak antilocalization behavior with zero return probability at Φ = 0. In contrast, the oscillation for the trivial edge states may exhibit either weak localization or antilocalization depending on the strength of the spin-orbit coupling, which has finite return probability at Φ = 0. Our results provide an effective way for the identification of the helical edge states. The predicted signature is stabilized by the time-reversal symmetry so that it is robust against disorder and does not require any fine adjustment of system.展开更多
The sp^(2)–sp^(3)-hybridized carbon allotropes with the advantage of two hybrid structures possess rich and fascinating electronic and mechanical properties and they have received long-standing attention.We design a ...The sp^(2)–sp^(3)-hybridized carbon allotropes with the advantage of two hybrid structures possess rich and fascinating electronic and mechanical properties and they have received long-standing attention.We design a class of versatile sp^(2)–sp^(3)carbons composed of graphite and diamond structural units with variable sizes.This class of sp^(2)–sp^(3)carbons is energetically more favorable than graphite under high pressure,and their mechanical and dynamical stabilities are further confirmed at ambient pressure.The calculations of band structure and mechanical properties indicate that this class of sp^(2)–sp^(3)carbons not only exhibits peculiar electronic characteristics adjusted from semiconducting to metallic nature but also presents excellent mechanical characteristics,such as superhigh hardness and high ductility.These sp^(2)–sp^(3)carbons have desirable properties across a broad range of potential applications.展开更多
The electronic properties and transport properties of MoTe2/SnS2 heterostructure Tunneling FETs are investigated by the density functional theory coupled with non-equilibrium Green’s function method.Two dimensional(2...The electronic properties and transport properties of MoTe2/SnS2 heterostructure Tunneling FETs are investigated by the density functional theory coupled with non-equilibrium Green’s function method.Two dimensional(2D)monolayer MoTe2 and SnS2 are combined to a vertical van der Waals heterojunction.A small staggered band gap is formed in the overlap region,while larger gaps remain in the underlap source and drain regions of monolayer MoTe2 and SnS2 respectively.Such a type-II heterojunction is favorable for tunneling FET.Furthermore,we suggest short stack length and large gate-to-drain overlap to enhance the on-state current suppress the leakage current respectively.The numerical results show that at a low drain to source voltage Vds=0.05V,On/Off current ratio can reach 108 and the On-state currents is over 20μA/μm for ntype devices.Our results present that van der Waals heterostructure TFETs can be potential candidate as next generation ultra-steep subthreshold and low-power electronic applications.展开更多
The relationship mechanism between the material pore structures and cathodic iodine chemistry plays a vital role in efficient Zn-I_(2) batteries,but is unclear,retarding further advances.This work innovatively indicat...The relationship mechanism between the material pore structures and cathodic iodine chemistry plays a vital role in efficient Zn-I_(2) batteries,but is unclear,retarding further advances.This work innovatively indicates a great contribution of∼2.5nm pore structure of nanocarbons to efficient iodine adsorption,rapid I^(−)↔I_(2) conversion,and polyiodide inhibition,via scrupulously designing catalysts with controllable pore sizes systematically.The I_(2)-loading within the designed nitrogen-doped nanocarbons can reach up to as high as 60.8 wt%.The batteries based on the cathode deliver impressive performances with a large capacity of 178.8 mAh/g and long-term cycling stability more than 4000 h at 5.0 C.Notably,these is no polyiodide such as I_(3)−and I_(5)−detected during the charge-discharge processes from comprehensive electrochemical cyclic voltammetry,X-ray photoelectron spectroscopy,and Raman technique.This work provides a novel knowledge-guided concept for rational pore design,promising better Zn-I_(2) batteries,which is also hoped to benefit other advanced energy technologies,such as Li-S,Li-ion,and Al-I_(2) batteries.展开更多
Fire smoke,which consists large amounts of fine particles,is considered as the fatal factor in fires.In this study,a fast smoke particle elimination method based on electro-acoustic coupling agglomeration technology i...Fire smoke,which consists large amounts of fine particles,is considered as the fatal factor in fires.In this study,a fast smoke particle elimination method based on electro-acoustic coupling agglomeration technology is proposed.First,the experimental results show that the electro-acoustic coupling agglomeration has higher smoke elimination efficiency compared to single-field.The smoke transmission is much less than 80%after 30s of single acoustic or electric field action,while the coupled field reaches 90%.Then,the effects of acoustic frequency,sound pressure level and voltage on the smoke elimination characteristics are discussed.It is found that the optimal acoustic frequency is 1.5kHz.While as the sound pressure level and voltage increase,the elimination efficiency first increases and then tends to stabilize,the critical values of the sound pressure level and voltage are 135 dB and 7kV.This indicates that there is an optimal combination of the three variables.Finally,through the theoretical analysis of particle movement and the micro-morphology of agglomerates,the particle agglomeration mechanism under the electro-acoustic coupling is analyzed.This study provides a new idea for the fast elimination of fire smoke particle.展开更多
In the past few decades,multi-scale numerical methods have been developed to model dense gas-solidflow in fluidized beds with different resolutions,accuracies,and efficiencies.However,ambiguity needsto be clarified in...In the past few decades,multi-scale numerical methods have been developed to model dense gas-solidflow in fluidized beds with different resolutions,accuracies,and efficiencies.However,ambiguity needsto be clarified in the multi-scale numerical simulation of fluidized beds:(i)the selection of the submodels,parameters,and numerical resolution;(ii)the multivariate coupling of operating conditions,bed configurations,polydispersity,and additional forces.Accordingly,a state-of-the-art review is performed to assess the applicability of multi-scale numerical methods in predicting dense gas-solid flow influidized beds at specific fluidization regimes(e.g.,bubbling fluidization region,fast fluidization regime),with a focus on the inter-particle collision models,inter-phase interaction models,collision parameters,and polydispersity effect.A mutual restriction exists between resolution and efficiency.Higherresolution methods need more computational resources and thus are suitable for smaller-scale simulations to provide a database for closure development.Lower-resolution methods require fewercomputational resources and thus underpin large-scale simulations to explore macro-scale phenomena.Model validations need to be further conducted under multiple flow conditions and comprehensivemetrics(e.g.,velocity profiles at different heights,bubbles,or cluster characteristics)for furtherimprovement of the applicability of each numerical method.展开更多
Deoxynivalenol(DON)is a prominent mycotoxin showing significant accumulation in cereal plants during infection by the phytopathogen Fusarium graminearum.It is a virulence factor that is important in the spread of F.gr...Deoxynivalenol(DON)is a prominent mycotoxin showing significant accumulation in cereal plants during infection by the phytopathogen Fusarium graminearum.It is a virulence factor that is important in the spread of F.graminearum within cereal heads,and it causes serious yield losses and significant contamination of cereal grains.In recent decades,genetic and genomic studies have facilitated the characterization of the molecular pathways of DON biosynthesis in F.graminearum and the environmental factors that influence DON accumulation.In addition,diverse scab resistance traits related to the repression of DON accumulation in plants have been identified,and experimental studies of wheat–pathogen interactions have contributed to understanding detoxification mechanisms in host plants.The present review illustrates and summarizes the molecular networks of DON mycotoxin production in F.graminearum and the methods of DON detoxification in plants based on the current literature,which provides molecular targets for crop improvement programs.This review also comprehensively discusses recent advances and challenges related to genetic engineering-mediated cultivar improvements to strengthen scab resistance.Furthermore,ongoing advancements in genetic engineering will enable the application of these molecular targets to develop more scab-resistant wheat cultivars with DON detoxification traits.展开更多
Dual circulating fluidized bed(DCFB)has emerged as an efficient reactor for biomass gasification due to its unique feature of high gas-solid contact efficiency and separated reactions in two reactors,yet the understan...Dual circulating fluidized bed(DCFB)has emerged as an efficient reactor for biomass gasification due to its unique feature of high gas-solid contact efficiency and separated reactions in two reactors,yet the understanding of complex in-furnace phenomena is still lacking.In this study,biomass gasification in an industrial-scale DCFB system was numerically studied using a multiphase particle-in-cell(MP-PIC)method featuring thermochemical sub-models(e.g.,heat transfer,heterogeneous reactions,and homogeneous reactions)under the Eulerian-Lagrangian framework.After model validation,the hydrodynamics and thermochemical characteristics(i.e.,pressure,temperature,and species)in the DCFB are comprehensively investigated.The results show that size-/density-induced segregation makes solid fuels concentrate on the bed surface.Interphase momentum exchange leads to the continuous decrease of the gas pressure axially.In the gasifier and combustor,the lower heating value(LHV)of the gas products is 5.56 MJ/Nm^(3)and 0.2 MJ/Nm^(3)and the combustible gas concentration(CGC)is 65.5%and 1.86%,respectively.The temperature in the combustor is about 100 K higher than that in the gasifier.A higher solid concentration results in a smaller value of particle heat transfer coefficient(HTC).The HTCs range from 50 to 150 W/(m^(2) K)for a solid concentration larger than 0.3 in the combustor while the HTCs range from 100 to 200 W/(m^(2 )K)in the gasifier.The Reynolds number of biomass particles is two orders of magnitude larger than that of the sand particle.The numerical results shed light on the reactor design and process optimization of biomass gasification in DCFBs.展开更多
Here,a series of polyurethane porous hydrogels(PUF-s)loaded with different sodium carboxymethyl cellulose(CMC)were successfully prepared by one-step foaming method.The physio-chemical prop-erties and morphologies were...Here,a series of polyurethane porous hydrogels(PUF-s)loaded with different sodium carboxymethyl cellulose(CMC)were successfully prepared by one-step foaming method.The physio-chemical prop-erties and morphologies were characterized.The effects of CMC content,adsorbent dosage,temperature,pH value and other fac-tors on the adsorption of methylene blue(MB)dye in water by CMC-PUF-s were also investigated through static adsorption experi-ments.The results showed that CMC-PUF-10 had excellent adsorp-tion performance for MB solution with removal rate of 81.47%,and the maximum adsorption capacity was 27.5 mg/g.In addition,the study of adsorption kinetics and adsorption isotherms showed that the adsorption of MB by CMC-PUF was more consistent with Langmuir isotherm adsorption model and pseudo second-order kinetic model.The adsorption thermodynamics study suggested that the adsorption process of MB by CMC-PUF-10 was sponta-neous and exothermic at room temperature.The results of cyclic adsorption experiment demonstrated that the removal rate of MB reached above 70%after five cycles,indicating the foams with excellent recyclability.Finally,a low-cost,environmentally friendly and recyclable MB adsorbent was synthesized in this study.As polyurethane foam was synthesized by one-step foaming method,this adsorbent can be prepared on site in practical application and reduce the transportation cost.展开更多
1Introduction The condenser plays a vital role in the operation of a thermal power generation unit.Its primary function is to remove the heat from the steam that is exhausted from the steam turbine,thereby condensing ...1Introduction The condenser plays a vital role in the operation of a thermal power generation unit.Its primary function is to remove the heat from the steam that is exhausted from the steam turbine,thereby condensing the steam into water.Additionally,it establishes and maintains a specific degree of vacuum at the exhaust port of the steam turbine,facilitating efficient operation of the turbine(Keshvarparast et al.,2020).The vacuum degree of the condenser is affected by physical factors such as steam-side resistance and heat-transfer efficiency.展开更多
Semiconductors are promising in photoelectric and thermoelectric devices, for which the thermal transport properties are of particular interest. However, they have not been fully understood, especially when crystallin...Semiconductors are promising in photoelectric and thermoelectric devices, for which the thermal transport properties are of particular interest. However, they have not been fully understood, especially when crystalline imperfections are present. Here, using cadmium telluride (CdTe) as an example, we illustrate how grain boundaries (GBs) affect the thermal transport properties of semiconductors. We develop a machine-learning force field from density functional theory calculations for predicting the lattice thermal conductivity (LTC) via equilibrium molecular dynamics simulations. The LTC of crystalline CdTe decreases with the relationship of κL~1/T in the simulation temperature range of 300 – 900 K, in which the isotropic LTC decreases from 3.34 to 0.23 W/ (m⋅K) due to the enhanced anharmonicity. More important, after introducing GBs, the LTC is suppressed in all directions, especially in the direction normal to the GB planes. More severe LTC suppression occurs in CdTe with Σ9 GB than that with Σ3 GB at 300 K, decreasing by 92.8% and 61.4% along the direction normal to the GB planes compared to the isotropic LTC of the crystalline CdTe, respectively. The decreased LTC is consistent with the weaker bonding near GB planes and lower shear modulus of the defective material. The analyses of the phonon dispersion curves, vibrational density of states, and phonon participation ratio indicate that the decreased LTC mainly arises from phonon scattering at GBs. Overall, our work highlights that GBs can greatly influence the LTC of semiconductors, thus providing a promising approach for thermal property design.展开更多
Biochar as an emerging carbonaceous material has exhibited a great potential in environmental application for its perfect adsorption ability.However,there are abundant persistent free radicals(PFRs)in biochar,so the d...Biochar as an emerging carbonaceous material has exhibited a great potential in environmental application for its perfect adsorption ability.However,there are abundant persistent free radicals(PFRs)in biochar,so the direct and indirect PFRs-mediated removal of organic and inorganic contaminants by biochar was widely reported.In order to comprehend deeply the formation of PFRs in biochar and their interactions with contaminants,this paper reviews the formation mechanisms of PFRs in biochar and the PFRs-mediated environmental applications of biochar in recent years.Finally,future challenges in this field are also proposed.This review provides a more comprehensive understanding on the emerging applications of biochar from the viewpoint of the catalytic role of PFRs.展开更多
Unmanned Aerial Vehicle(UAV) is developing towards the direction of High Altitude Long Endurance(HALE). This will have an important influence on the stability of its airborne electronic equipment using passive the...Unmanned Aerial Vehicle(UAV) is developing towards the direction of High Altitude Long Endurance(HALE). This will have an important influence on the stability of its airborne electronic equipment using passive thermal management. In this paper, a multi-node transient thermal model for airborne electronic equipment is set up based on the thermal network method to predict their dynamic temperature responses under high altitude and long flight time conditions. Some relevant factors are considered into this temperature prediction model including flight environment,radiation, convection, heat conduction, etc. An experimental chamber simulating a high altitude flight environment was set up to survey the dynamic thermal responses of airborne electronic equipment in a UAV. According to the experimental measurement results, the multi-node transient thermal model is verified without consideration of the effects of flight speed. Then, a modified way about outside flight speed is added into the model to improve the temperature prediction performance. Finally, the corresponding simulation code is developed based on the proposed model. It can realize the dynamic temperature prediction of airborne electronic equipment under HALE conditions.展开更多
基金supported by the financial support of the Guangxi Science and Technology Major Projects(Guike AA23023033)。
文摘Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electrocatalysts remains a formidable challenge.Here,an electrochemical activation strategy with selective etching was utilized to guide the reconstruction process of a hybrid cobalt-molybdenum oxide(CoMoO_(4)/Co_(3)O_(4)@CC)in a favorable direction to improve the OER performance.Both in-situ Raman and multiple ex-situ characterization tools demonstrate that controlled surface reconstruction can be easily achieved through Mo etching,with the formation of a dynamically stable amorphous-crystalline heterostructure.Theoretical calculations together with experimental results reveal that the synergistic effects between amorphous CoOOH and crystalline Co_(3)O_(4) are crucial in enhancing the catalytic performance.Consequently,the reconstructed CoMoO_(4)/Co_(3)O_(4)@CC exhibits a low overpotential of 250 mV to achieve a current density of 10 mA cm^(-2) in 1 M KOH,and more importantly it can be practiced in electrolytic water splitting and rechargeable zinc-air batteries devices,achieving ultra-long stability for over 500 and 1200 h,respectively.This work provides a promising route for the construction of high-performance electrocatalysts.
基金the financial support from the National Natural Science Foundation of China(Nos.51874051,52111530139)the Science and Technology Plan Project of Changzhou,China(No.CQ20D2EHPA034)+1 种基金the Guangxi Natural Science Foundation,China(Nos.2018GXNSFAA281184,2019GXNSFAA245046)Key Laboratory of New Processing Technology for Nonferrous Metal&Materials,Ministry of Education,China(No.20KF-4,20AA-18)。
基金Y.Hou expresses appreciation for the assistance of the National Natural Science Foundation of China(21922811,21878270,and 21961160742)the Zhejiang Provincial Natural Science Foundation of China(LR19B060002)+2 种基金the Fundamental Research Funds for the Central Universities(2020XZZX002-09)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2019R01006)the Startup Foundation for Hundred-Talent Program of Zhejiang University.K.Ostrikov acknowledges partial assistance from the Australian Research Council.
文摘Developing high-performing oxygen evolution reaction(OER)electrocatalysts under high-current operation conditions is critical for future commercial applications of alkaline water electrolysis for clean energy generation.Herein,we prepared a three-dimensional(3D)bimetallic oxyhydroxide hybrid grown on a Ni foam(NiFeOOH/NF)prepared by immersing Ni foam(NF)into Fe(NO_(3))_(3) solution.In this unique 3D structure,the NiFeOOH/NF hybrid was composed of crystalline Ni(OH)_(2) and amorphous FeOOH evenly grown on the NF surface.As a bimetallic oxyhydroxide electrocatalyst,the NiFeOOH/NF hybrid exhibited excellent catalytic activity,surpassing not only the other reported Ni–Fe based electrocatalysts,but also the commercial Ir/C catalyst.In situ electrochemical Raman spectroscopy demonstrated the active FeOOH and NiOOH phases involved in the OER process.Profiting from the synergy of Fe and Ni catalytic sites,the NiFeOOH/NF hybrid delivered an outstanding OER performance under challenging industrial conditions in a 10.0 mol·L^(-1) KOH electrolyte at 80℃,requiring potentials as small as 1.47 and 1.51 V to achieve the super-high catalytic current densities of 100 and 500mA∙cm^(-2),respectively.
基金This study was financially supported by National Natural Science Foundation of China(GrantNo.51834001)Fundamental Research Funds for the Central University(Grant No.FRF-BD-20-01B).
文摘In order to reduce the influence of impurities in hemihydrate phosphogypsum(HPG)on the environment and improve the workability of HPG,the effects of the content of quicklime and types of biopolymer(hydroxypropyl methylcellulose,xanthan gum,sodium polyacrylate(PAANa))on the compressive strength,softening coefficient and ultrasonic velocity of HPG were evaluated.When the content of quicklime was 1.5%and the content of PAA-Na was 0.2%,HPG had the best mechanical properties and workability,its water retention rate can be increased by 5.8%,and unconfined compressive strength of 3 days increased by 10.3%and 7 days increased by 13.1%.Through the analysis of scanning electron microscope and X-ray diffraction,it was found that the hydration reac-tion of HPG was more sufficient,the pores size and number decreased,the number of impurities on the crystal surface decreased obviously,and CaF2 and other substances were formed by the reaction after the addition of quicklime.After adding quicklime and PAANa,the indicators of gypsum self-leveling mortar prepared by HPG meet the requirements of the standard.
基金supported by the National Natural Science Foundation of China(Grant Nos.52090020,91963203,U20A20238,51772260,52073245,and 51722209)the National Key R&D Program of China(Grant Nos.2018YFA0703400 and 2018YFA0305900)+1 种基金the Natural Science Foundation for Distinguished Young Scholars of Hebei Province of China(Grant No.E2018203349)the Talent Research Project in Hebei Province(Grant No.2020HBQZYC003)。
文摘Both boron nitride(BN)and carbon(C)have sp,sp^(2)and sp^(3)hybridization modes,thus resulting in a variety of BN and C polymorphs with similar structures,such as hexagonal BN(hBN)and graphite,cubic BN(cBN)and diamond.Here,five types of BN polymorph structures are proposed theoretically,inspired by the graphite-diamond hybrid structures discovered in a recent experiment.These BN polymorphs with graphite-diamond hybrid structures possess excellent mechanical properties with combined high hardness and high ductility,and also exhibit various electronic properties such as semi-conductivity,semi-metallicity,and even one-and two-dimensional conductivity,differing from known insulators hBN and cBN.The simulated diffraction patterns of these BN hybrid structures could account for the unsolved diffraction patterns of intermediate products composed of so-called“compressed hBN”and diamond-like BN,caused by phase transitions in previous experiments.Thus,this work provides a theoretical basis for the presence of these types of hybrid materials during phase transitions between graphite-like and diamond-like BN polymorphs.
基金Supported by the National Natural Science Foundation of China(91541202,51276163)
文摘A series of 2D direct numerical simulations were performed with an accurate level set method for single drop impacts.The adopted ACLS method was validated to be efficient with perfect mass conservation in both normal and oblique impacts.A square-root correction for neck bases was modified in accuracy as well as scope of applications.In addition,process of jet formation and evolution was studied to reveal internal dynamics in drop impacts.It's found that pressure gradient and vortex are coexisting and completive reasons for jet topology while the inclined angle has a significant effect on them.Mechanisms of jet formation and evolution are different in the front and back necks.With the help of PDF distribution and correction calculation,a compromise in the competition is observed.This work lays a solid foundation for further studies of dynamics in gas-liquid flows.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 12074172, 11674160, and 11974168)the Startup Grant at Nanjing University+1 种基金the State Key Program for Basic Researches of China (Grant No. 2017YFA0303203)the Excellent Programme at Nanjing University。
文摘Helical edge states are the hallmark of the quantum spin Hall insulator. Recently, several experiments have observed transport signatures contributed by trivial edge states, making it difficult to distinguish between the topologically trivial and nontrivial phases. Here, we show that helical edge states can be identified by the randomgate-voltage induced Φ_(0)/2-period oscillation of the averaged electron return probability in the interferometer constructed by the edge states. The random gate voltage can highlight the Φ_(0)/2-period Al'tshuler–Aronov–Spivak oscillation proportional to sin^(2)(2πΦ/Φ_(0)) by quenching the Φ_(0)-period Aharonov–Bohm oscillation. It is found that the helical spin texture induced π Berry phase is key to such weak antilocalization behavior with zero return probability at Φ = 0. In contrast, the oscillation for the trivial edge states may exhibit either weak localization or antilocalization depending on the strength of the spin-orbit coupling, which has finite return probability at Φ = 0. Our results provide an effective way for the identification of the helical edge states. The predicted signature is stabilized by the time-reversal symmetry so that it is robust against disorder and does not require any fine adjustment of system.
基金Supported by the National Key R&D Program of China(Grant No.2018YFA0703400)the National Natural Science Foundation of China(Grant Nos.91963203,U20A20238,51525205,and 52090020)+1 种基金the NSF for Distinguished Young Scholars of Hebei Province of China(Grant No.E2018203349)the China Postdoctoral Science Foundation(Grant No.2017M620097).
文摘The sp^(2)–sp^(3)-hybridized carbon allotropes with the advantage of two hybrid structures possess rich and fascinating electronic and mechanical properties and they have received long-standing attention.We design a class of versatile sp^(2)–sp^(3)carbons composed of graphite and diamond structural units with variable sizes.This class of sp^(2)–sp^(3)carbons is energetically more favorable than graphite under high pressure,and their mechanical and dynamical stabilities are further confirmed at ambient pressure.The calculations of band structure and mechanical properties indicate that this class of sp^(2)–sp^(3)carbons not only exhibits peculiar electronic characteristics adjusted from semiconducting to metallic nature but also presents excellent mechanical characteristics,such as superhigh hardness and high ductility.These sp^(2)–sp^(3)carbons have desirable properties across a broad range of potential applications.
基金the Training Program of the Major Research Plan of the National Natural Science Foundation of China(61774168,91964103)and the MOST(2016YFA0202300).
文摘The electronic properties and transport properties of MoTe2/SnS2 heterostructure Tunneling FETs are investigated by the density functional theory coupled with non-equilibrium Green’s function method.Two dimensional(2D)monolayer MoTe2 and SnS2 are combined to a vertical van der Waals heterojunction.A small staggered band gap is formed in the overlap region,while larger gaps remain in the underlap source and drain regions of monolayer MoTe2 and SnS2 respectively.Such a type-II heterojunction is favorable for tunneling FET.Furthermore,we suggest short stack length and large gate-to-drain overlap to enhance the on-state current suppress the leakage current respectively.The numerical results show that at a low drain to source voltage Vds=0.05V,On/Off current ratio can reach 108 and the On-state currents is over 20μA/μm for ntype devices.Our results present that van der Waals heterostructure TFETs can be potential candidate as next generation ultra-steep subthreshold and low-power electronic applications.
基金supported by the Tianjin Natural Science Foundation of China(Nos.20JCZDJC00280 and 20JCYBJC00380).
文摘The relationship mechanism between the material pore structures and cathodic iodine chemistry plays a vital role in efficient Zn-I_(2) batteries,but is unclear,retarding further advances.This work innovatively indicates a great contribution of∼2.5nm pore structure of nanocarbons to efficient iodine adsorption,rapid I^(−)↔I_(2) conversion,and polyiodide inhibition,via scrupulously designing catalysts with controllable pore sizes systematically.The I_(2)-loading within the designed nitrogen-doped nanocarbons can reach up to as high as 60.8 wt%.The batteries based on the cathode deliver impressive performances with a large capacity of 178.8 mAh/g and long-term cycling stability more than 4000 h at 5.0 C.Notably,these is no polyiodide such as I_(3)−and I_(5)−detected during the charge-discharge processes from comprehensive electrochemical cyclic voltammetry,X-ray photoelectron spectroscopy,and Raman technique.This work provides a novel knowledge-guided concept for rational pore design,promising better Zn-I_(2) batteries,which is also hoped to benefit other advanced energy technologies,such as Li-S,Li-ion,and Al-I_(2) batteries.
基金supported by the National Natural Science Foundation of China(Grant No.52306207 and 52276162)the“Leading Goose”R&D Program of Zhejiang(Grant No.2023C03157).
文摘Fire smoke,which consists large amounts of fine particles,is considered as the fatal factor in fires.In this study,a fast smoke particle elimination method based on electro-acoustic coupling agglomeration technology is proposed.First,the experimental results show that the electro-acoustic coupling agglomeration has higher smoke elimination efficiency compared to single-field.The smoke transmission is much less than 80%after 30s of single acoustic or electric field action,while the coupled field reaches 90%.Then,the effects of acoustic frequency,sound pressure level and voltage on the smoke elimination characteristics are discussed.It is found that the optimal acoustic frequency is 1.5kHz.While as the sound pressure level and voltage increase,the elimination efficiency first increases and then tends to stabilize,the critical values of the sound pressure level and voltage are 135 dB and 7kV.This indicates that there is an optimal combination of the three variables.Finally,through the theoretical analysis of particle movement and the micro-morphology of agglomerates,the particle agglomeration mechanism under the electro-acoustic coupling is analyzed.This study provides a new idea for the fast elimination of fire smoke particle.
基金This work was supported by the National Natural ScienceFoundation of China(No.51925603)the Fundamental ResearchFunds for the Central Universities(No.2022ZFJH004).
文摘In the past few decades,multi-scale numerical methods have been developed to model dense gas-solidflow in fluidized beds with different resolutions,accuracies,and efficiencies.However,ambiguity needsto be clarified in the multi-scale numerical simulation of fluidized beds:(i)the selection of the submodels,parameters,and numerical resolution;(ii)the multivariate coupling of operating conditions,bed configurations,polydispersity,and additional forces.Accordingly,a state-of-the-art review is performed to assess the applicability of multi-scale numerical methods in predicting dense gas-solid flow influidized beds at specific fluidization regimes(e.g.,bubbling fluidization region,fast fluidization regime),with a focus on the inter-particle collision models,inter-phase interaction models,collision parameters,and polydispersity effect.A mutual restriction exists between resolution and efficiency.Higherresolution methods need more computational resources and thus are suitable for smaller-scale simulations to provide a database for closure development.Lower-resolution methods require fewercomputational resources and thus underpin large-scale simulations to explore macro-scale phenomena.Model validations need to be further conducted under multiple flow conditions and comprehensivemetrics(e.g.,velocity profiles at different heights,bubbles,or cluster characteristics)for furtherimprovement of the applicability of each numerical method.
基金This work was financially supported by the National Natural Science Foundation of China(32260717)Natural Science Foundation of Shaanxi Province,China(2021JQ-619)+1 种基金China Postdoctoral Science Foundation’s funded project(2017M613228)Research Fund for the Doctoral Start-up Foundation of Yan’an University(YDBK2019-65).
文摘Deoxynivalenol(DON)is a prominent mycotoxin showing significant accumulation in cereal plants during infection by the phytopathogen Fusarium graminearum.It is a virulence factor that is important in the spread of F.graminearum within cereal heads,and it causes serious yield losses and significant contamination of cereal grains.In recent decades,genetic and genomic studies have facilitated the characterization of the molecular pathways of DON biosynthesis in F.graminearum and the environmental factors that influence DON accumulation.In addition,diverse scab resistance traits related to the repression of DON accumulation in plants have been identified,and experimental studies of wheat–pathogen interactions have contributed to understanding detoxification mechanisms in host plants.The present review illustrates and summarizes the molecular networks of DON mycotoxin production in F.graminearum and the methods of DON detoxification in plants based on the current literature,which provides molecular targets for crop improvement programs.This review also comprehensively discusses recent advances and challenges related to genetic engineering-mediated cultivar improvements to strengthen scab resistance.Furthermore,ongoing advancements in genetic engineering will enable the application of these molecular targets to develop more scab-resistant wheat cultivars with DON detoxification traits.
基金We are grateful for the support from the National Natural Science Foundation of China(grant No.51925603)the Fundamental Research Funds for the Central Universities(grant No.2022ZFJH004).
文摘Dual circulating fluidized bed(DCFB)has emerged as an efficient reactor for biomass gasification due to its unique feature of high gas-solid contact efficiency and separated reactions in two reactors,yet the understanding of complex in-furnace phenomena is still lacking.In this study,biomass gasification in an industrial-scale DCFB system was numerically studied using a multiphase particle-in-cell(MP-PIC)method featuring thermochemical sub-models(e.g.,heat transfer,heterogeneous reactions,and homogeneous reactions)under the Eulerian-Lagrangian framework.After model validation,the hydrodynamics and thermochemical characteristics(i.e.,pressure,temperature,and species)in the DCFB are comprehensively investigated.The results show that size-/density-induced segregation makes solid fuels concentrate on the bed surface.Interphase momentum exchange leads to the continuous decrease of the gas pressure axially.In the gasifier and combustor,the lower heating value(LHV)of the gas products is 5.56 MJ/Nm^(3)and 0.2 MJ/Nm^(3)and the combustible gas concentration(CGC)is 65.5%and 1.86%,respectively.The temperature in the combustor is about 100 K higher than that in the gasifier.A higher solid concentration results in a smaller value of particle heat transfer coefficient(HTC).The HTCs range from 50 to 150 W/(m^(2) K)for a solid concentration larger than 0.3 in the combustor while the HTCs range from 100 to 200 W/(m^(2 )K)in the gasifier.The Reynolds number of biomass particles is two orders of magnitude larger than that of the sand particle.The numerical results shed light on the reactor design and process optimization of biomass gasification in DCFBs.
基金the Science and Technology Department of Sichuan Province[2021YFH0098].
文摘Here,a series of polyurethane porous hydrogels(PUF-s)loaded with different sodium carboxymethyl cellulose(CMC)were successfully prepared by one-step foaming method.The physio-chemical prop-erties and morphologies were characterized.The effects of CMC content,adsorbent dosage,temperature,pH value and other fac-tors on the adsorption of methylene blue(MB)dye in water by CMC-PUF-s were also investigated through static adsorption experi-ments.The results showed that CMC-PUF-10 had excellent adsorp-tion performance for MB solution with removal rate of 81.47%,and the maximum adsorption capacity was 27.5 mg/g.In addition,the study of adsorption kinetics and adsorption isotherms showed that the adsorption of MB by CMC-PUF was more consistent with Langmuir isotherm adsorption model and pseudo second-order kinetic model.The adsorption thermodynamics study suggested that the adsorption process of MB by CMC-PUF-10 was sponta-neous and exothermic at room temperature.The results of cyclic adsorption experiment demonstrated that the removal rate of MB reached above 70%after five cycles,indicating the foams with excellent recyclability.Finally,a low-cost,environmentally friendly and recyclable MB adsorbent was synthesized in this study.As polyurethane foam was synthesized by one-step foaming method,this adsorbent can be prepared on site in practical application and reduce the transportation cost.
基金supported by the National Natural Science Foundation of China(No.51806192)the Fundamental Research Funds for the Central Universities of China(No.2022ZFJH004).
文摘1Introduction The condenser plays a vital role in the operation of a thermal power generation unit.Its primary function is to remove the heat from the steam that is exhausted from the steam turbine,thereby condensing the steam into water.Additionally,it establishes and maintains a specific degree of vacuum at the exhaust port of the steam turbine,facilitating efficient operation of the turbine(Keshvarparast et al.,2020).The vacuum degree of the condenser is affected by physical factors such as steam-side resistance and heat-transfer efficiency.
文摘Semiconductors are promising in photoelectric and thermoelectric devices, for which the thermal transport properties are of particular interest. However, they have not been fully understood, especially when crystalline imperfections are present. Here, using cadmium telluride (CdTe) as an example, we illustrate how grain boundaries (GBs) affect the thermal transport properties of semiconductors. We develop a machine-learning force field from density functional theory calculations for predicting the lattice thermal conductivity (LTC) via equilibrium molecular dynamics simulations. The LTC of crystalline CdTe decreases with the relationship of κL~1/T in the simulation temperature range of 300 – 900 K, in which the isotropic LTC decreases from 3.34 to 0.23 W/ (m⋅K) due to the enhanced anharmonicity. More important, after introducing GBs, the LTC is suppressed in all directions, especially in the direction normal to the GB planes. More severe LTC suppression occurs in CdTe with Σ9 GB than that with Σ3 GB at 300 K, decreasing by 92.8% and 61.4% along the direction normal to the GB planes compared to the isotropic LTC of the crystalline CdTe, respectively. The decreased LTC is consistent with the weaker bonding near GB planes and lower shear modulus of the defective material. The analyses of the phonon dispersion curves, vibrational density of states, and phonon participation ratio indicate that the decreased LTC mainly arises from phonon scattering at GBs. Overall, our work highlights that GBs can greatly influence the LTC of semiconductors, thus providing a promising approach for thermal property design.
基金supported by the National Natural Science Foundation of China(No.52000013)the Scientific Research Foundation of Hunan Provincial Education Department,China(No.18B415,18B406 and 18A378)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2020JJ4643)the training program for Excellent Yong Innovators of Changsha(No.kq1802022)。
文摘Biochar as an emerging carbonaceous material has exhibited a great potential in environmental application for its perfect adsorption ability.However,there are abundant persistent free radicals(PFRs)in biochar,so the direct and indirect PFRs-mediated removal of organic and inorganic contaminants by biochar was widely reported.In order to comprehend deeply the formation of PFRs in biochar and their interactions with contaminants,this paper reviews the formation mechanisms of PFRs in biochar and the PFRs-mediated environmental applications of biochar in recent years.Finally,future challenges in this field are also proposed.This review provides a more comprehensive understanding on the emerging applications of biochar from the viewpoint of the catalytic role of PFRs.
基金the financial support of National Key R&D Program of China (No.2017YFB1201100)
文摘Unmanned Aerial Vehicle(UAV) is developing towards the direction of High Altitude Long Endurance(HALE). This will have an important influence on the stability of its airborne electronic equipment using passive thermal management. In this paper, a multi-node transient thermal model for airborne electronic equipment is set up based on the thermal network method to predict their dynamic temperature responses under high altitude and long flight time conditions. Some relevant factors are considered into this temperature prediction model including flight environment,radiation, convection, heat conduction, etc. An experimental chamber simulating a high altitude flight environment was set up to survey the dynamic thermal responses of airborne electronic equipment in a UAV. According to the experimental measurement results, the multi-node transient thermal model is verified without consideration of the effects of flight speed. Then, a modified way about outside flight speed is added into the model to improve the temperature prediction performance. Finally, the corresponding simulation code is developed based on the proposed model. It can realize the dynamic temperature prediction of airborne electronic equipment under HALE conditions.