期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Compositional modeling and simulation of dimethyl ether (DME)-enhanced waterflood to investigate oil mobility improvement 被引量:2
1
作者 Jinhyung Cho Tae Hong Kim kun sang lee 《Petroleum Science》 SCIE CAS CSCD 2018年第2期297-304,共8页
Dimethyl ether (DME) is a widely used industrial compound, and Shell developed a chemical EOR technique called DME- enhanced waterflood (DEW). DME is applied as a miscible solvent for EOR application to enhance th... Dimethyl ether (DME) is a widely used industrial compound, and Shell developed a chemical EOR technique called DME- enhanced waterflood (DEW). DME is applied as a miscible solvent for EOR application to enhance the performance of conventional waterflood. When DME is injected into the reservoir and contacts the oil, the first-contact miscibility process occurs, which leads to oil swelling and viscosity reduction. The reduction in oil density and viscosity improves oil mobility and reduces residual oil saturation, enhancing oil production. A numerical study based on compositional simulation has been developed to describe the phase behavior in the DEW model. An accurate compositional model is imperative because DME has a unique advantage of solubility in both oil and water. For DEW, oil recovery increased by 34% and 12% compared to conventional waterflood and CO2 flood, respectively. Compositional modeling and simulation of the DEW process indicated the unique solubility effect of DME on EOR performance. 展开更多
关键词 Dimethyl ether (DME) DME-enhanced waterflood (DEW) Solubility Oil mobility
下载PDF
Geochemical evaluation of low salinity hot water injection to enhance heavy oil recovery from carbonate reservoirs
2
作者 Ji Ho lee kun sang lee 《Petroleum Science》 SCIE CAS CSCD 2019年第2期366-381,共16页
Although low salinity water injection(LSWI) has recovered residual oil after the conventional waterflood, highly viscous oil has remained in heavy oil reservoirs. Hot water injection is an economic and practical metho... Although low salinity water injection(LSWI) has recovered residual oil after the conventional waterflood, highly viscous oil has remained in heavy oil reservoirs. Hot water injection is an economic and practical method to improve oil mobility for viscous oil reservoirs. It potentially controls temperature-dependent geochemical reactions underlying the LSWI mechanism and oil viscosity. Therefore, this study has modeled and evaluated a hybrid process of low salinity hot water injection(hot LSWI) to quantify synergistic effects in heavy oil reservoirs. In comparison to seawater injection(SWI) and LSWI, hot LSWI results in more cation ion-exchange(Ca^(2+) and Mg^(2+)) and more wettability modification. Hot LSWI also reduces oil viscosity. In core-scaled systems, it increases oil recovery by 21% and 6% over SWI and LSWI. In a pilotscaled reservoir, it produces additional oil by 6% and 3% over SWI and LSWI. Probabilistic forecasting with uncertainty assessment further evaluates the feasibility of hot LSWI to consider uncertainty in the pilot-scaled reservoir and observes enhanced heavy oil production. This study confirms the viability of hot LSWI due to synergistic effects including enhanced wettability modification and oil viscosity reduction effects. 展开更多
关键词 Low SALINITY WATER INJECTION Hot WATER INJECTION WETTABILITY modification GEOCHEMICAL reaction VISCOSITY reduction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部