In this paper, we present a study on activity functions for an MLNN (multi-layered neural network) and propose a suitable activity function for data enlargement processing. We have carefully studied the training perfo...In this paper, we present a study on activity functions for an MLNN (multi-layered neural network) and propose a suitable activity function for data enlargement processing. We have carefully studied the training performance of Sigmoid, ReLu, Leaky-ReLu and L & exp. activity functions for few inputs to multiple output training patterns. Our MLNNs model has L hidden layers with two or three inputs to four or six outputs data variations by BP (backpropagation) NN (neural network) training. We focused on the multi teacher training signals to investigate and evaluate the training performance in MLNNs to select the best and good activity function for data enlargement and hence could be applicable for image and signal processing (synaptic divergence) along with the proposed methods with convolution networks. We specifically used four activity functions from which we found out that L & exp. activity function can suite DENN (data enlargement neural network) training since it could give the highest percentage training abilities compared to the other activity functions of Sigmoid, ReLu and Leaky-ReLu during simulation and training of data in the network. And finally, we recommend L & exp. function to be good for MLNNs and may be applicable for signal processing of data and information enlargement because of its performance training characteristics with multiple teacher training patterns using original generated data and hence can be tried with CNN (convolution neural networks) of image processing.展开更多
This paper presents a study on the improvement of MLNNs(multi-layer neural networks)performance by an activity function for multi logic training patterns.Our model network has L hidden layers of two inputs and three,f...This paper presents a study on the improvement of MLNNs(multi-layer neural networks)performance by an activity function for multi logic training patterns.Our model network has L hidden layers of two inputs and three,four to six output training using BP(backpropagation)neural network.We used logic functions of XOR(exclusive OR),OR,AND,NAND(not AND),NXOR(not exclusive OR)and NOR(not OR)as the multi logic teacher signals to evaluate the training performance of MLNNs by an activity function for information and data enlargement in signal processing(synaptic divergence state).We specifically used four activity functions from which we modified one and called it L&exp.function as it could give the highest training abilities compared to the original activity functions of Sigmoid,ReLU and Step during simulation and training in the network.And finally,we propose L&exp.function as being good for MLNNs and it may be applicable for signal processing of data and information enlargement because of its performance training characteristics with multiple training logic patterns hence can be adopted in machine deep learning.展开更多
文摘In this paper, we present a study on activity functions for an MLNN (multi-layered neural network) and propose a suitable activity function for data enlargement processing. We have carefully studied the training performance of Sigmoid, ReLu, Leaky-ReLu and L & exp. activity functions for few inputs to multiple output training patterns. Our MLNNs model has L hidden layers with two or three inputs to four or six outputs data variations by BP (backpropagation) NN (neural network) training. We focused on the multi teacher training signals to investigate and evaluate the training performance in MLNNs to select the best and good activity function for data enlargement and hence could be applicable for image and signal processing (synaptic divergence) along with the proposed methods with convolution networks. We specifically used four activity functions from which we found out that L & exp. activity function can suite DENN (data enlargement neural network) training since it could give the highest percentage training abilities compared to the other activity functions of Sigmoid, ReLu and Leaky-ReLu during simulation and training of data in the network. And finally, we recommend L & exp. function to be good for MLNNs and may be applicable for signal processing of data and information enlargement because of its performance training characteristics with multiple teacher training patterns using original generated data and hence can be tried with CNN (convolution neural networks) of image processing.
文摘This paper presents a study on the improvement of MLNNs(multi-layer neural networks)performance by an activity function for multi logic training patterns.Our model network has L hidden layers of two inputs and three,four to six output training using BP(backpropagation)neural network.We used logic functions of XOR(exclusive OR),OR,AND,NAND(not AND),NXOR(not exclusive OR)and NOR(not OR)as the multi logic teacher signals to evaluate the training performance of MLNNs by an activity function for information and data enlargement in signal processing(synaptic divergence state).We specifically used four activity functions from which we modified one and called it L&exp.function as it could give the highest training abilities compared to the original activity functions of Sigmoid,ReLU and Step during simulation and training in the network.And finally,we propose L&exp.function as being good for MLNNs and it may be applicable for signal processing of data and information enlargement because of its performance training characteristics with multiple training logic patterns hence can be adopted in machine deep learning.