Assessing the stacking fault forming probability(P_(sf)) and stacking fault energy(SFE)in medium-or highMn base structural materials can anticipate and elucidate the microstructural evolution before and after deformat...Assessing the stacking fault forming probability(P_(sf)) and stacking fault energy(SFE)in medium-or highMn base structural materials can anticipate and elucidate the microstructural evolution before and after deformation.Typically,these two parameters have been determined from theoretical calculations and empirical results.However,the estimation of SFE values in Fe–Mn–C ternary systems is a longstanding debate due to the complicated nature of carbon:that is,whether the carbon doping indeed plays an important role in the formation of stacking faults;and how the amount of carbon atoms exist at grain boundaries or at internal grains with respect to the nominal carbon doping contents.Herein,the use of atom probe tomography and transmission electron microscopy(TEM)unveils the influence of carbondoping contents on the structural properties of dual-phase Fe–17 Mn–x C(x=0–1.56 at%)steels,such as carbon segregation free energy at grain boundaries,carbon concentration in grain interior,interplanar D-spacings,and mean width of intrinsic stacking faults,which are essential for SFE estimation.We next determined the Psfvalues by two different methods,viz.,reciprocal-space electron diffraction measurements and stacking fault width measurements in real-space TEM images.Then,SFEs in the Fe–17 Mn–x C systems were calculated on the basis of the generally-known SFE equations.We found that the high amount of carbon doping gives rise to the increased SFE from 8.6 to 13.5 m J/m^(2)with non-linear variation.This SFE trend varies inversely with the mean width of localized stacking faults,which pass through both other stacking faults and pre-existingε-martensite plates without much difficulty at their intersecting zones.The high amount of carbon doping acts twofold,through increasing the segregation free energy(due to more carbon at grain boundaries)and large lattice expansion(due to increased soluble carbon at internal grains).The experimental data obtained here strengthens the composition-dependent SFE maps for predicting the deformation structure and mechanical response of other carbon-doped high-Mn alloy compositions.展开更多
High- and medium-Mn (H/M-Mn) base lightweight steels are a class of ultrastrong structural materials with high ductility compared to their low-Mn counterparts with low strength and poor ductility.However, producing th...High- and medium-Mn (H/M-Mn) base lightweight steels are a class of ultrastrong structural materials with high ductility compared to their low-Mn counterparts with low strength and poor ductility.However, producing these H/M-Mn materials requires the advanced or high-tech manufacturing techniques, which can unavoidably provoke labor and cost concerns. Herein, we have developed a facilestrategy that circumvents the strength–ductility trade-off in low-Mn ferritic lightweight steels, by employing low-temperature tempering-induced partitioning (LTP). This LTP treatment affords a typical Fe-2.8Mn-5.7Al-0.3C (wt.%) steel with a heterogeneous size-distribution of metastable austenite embeddedin a ferrite matrix for partitioning more carbon into smaller austenite grains than into the larger austenite ones. This size-dependent partitioning results in slip plane spacing modification and lattice strain,which act through dislocation engineering. We ascribe the simultaneous improvement in strength andtotal elongation to both the size-dependent dislocation movement in austenite grains and the controlleddeformation-induced martensitic transformation. The low-carbon-partitioned large austenite grains increase the strength and ductility as a consequence of the combined martensitic transformation andhigh dislocation density-induced hardening and by interface strengthening. Additionally, high-carbonpartitioned small austenite grains enhance the strength and ductility by planar dislocation glide (inthe low strain regime) and by cross-slipping and delayed martensitic transformation (in the high strainregime). The concept of size-dependent dislocation engineering may provide different pathways for developing a wide range of heterogeneous-structured low-Mn lightweight steels, suggesting that LTP maybe desirable for broad industrial applications at an economic cost.展开更多
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2020R1A4A3079417)(No.2021R1A2C4002622)by the Future Material Discovery Program of the NRFfunded by the MSIP of Korea(No.2021M3D1A1021236)。
文摘Assessing the stacking fault forming probability(P_(sf)) and stacking fault energy(SFE)in medium-or highMn base structural materials can anticipate and elucidate the microstructural evolution before and after deformation.Typically,these two parameters have been determined from theoretical calculations and empirical results.However,the estimation of SFE values in Fe–Mn–C ternary systems is a longstanding debate due to the complicated nature of carbon:that is,whether the carbon doping indeed plays an important role in the formation of stacking faults;and how the amount of carbon atoms exist at grain boundaries or at internal grains with respect to the nominal carbon doping contents.Herein,the use of atom probe tomography and transmission electron microscopy(TEM)unveils the influence of carbondoping contents on the structural properties of dual-phase Fe–17 Mn–x C(x=0–1.56 at%)steels,such as carbon segregation free energy at grain boundaries,carbon concentration in grain interior,interplanar D-spacings,and mean width of intrinsic stacking faults,which are essential for SFE estimation.We next determined the Psfvalues by two different methods,viz.,reciprocal-space electron diffraction measurements and stacking fault width measurements in real-space TEM images.Then,SFEs in the Fe–17 Mn–x C systems were calculated on the basis of the generally-known SFE equations.We found that the high amount of carbon doping gives rise to the increased SFE from 8.6 to 13.5 m J/m^(2)with non-linear variation.This SFE trend varies inversely with the mean width of localized stacking faults,which pass through both other stacking faults and pre-existingε-martensite plates without much difficulty at their intersecting zones.The high amount of carbon doping acts twofold,through increasing the segregation free energy(due to more carbon at grain boundaries)and large lattice expansion(due to increased soluble carbon at internal grains).The experimental data obtained here strengthens the composition-dependent SFE maps for predicting the deformation structure and mechanical response of other carbon-doped high-Mn alloy compositions.
基金The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.Patent application(Korean Patent application number 10-2020-0172118)has been filed based on the results of this study。
文摘High- and medium-Mn (H/M-Mn) base lightweight steels are a class of ultrastrong structural materials with high ductility compared to their low-Mn counterparts with low strength and poor ductility.However, producing these H/M-Mn materials requires the advanced or high-tech manufacturing techniques, which can unavoidably provoke labor and cost concerns. Herein, we have developed a facilestrategy that circumvents the strength–ductility trade-off in low-Mn ferritic lightweight steels, by employing low-temperature tempering-induced partitioning (LTP). This LTP treatment affords a typical Fe-2.8Mn-5.7Al-0.3C (wt.%) steel with a heterogeneous size-distribution of metastable austenite embeddedin a ferrite matrix for partitioning more carbon into smaller austenite grains than into the larger austenite ones. This size-dependent partitioning results in slip plane spacing modification and lattice strain,which act through dislocation engineering. We ascribe the simultaneous improvement in strength andtotal elongation to both the size-dependent dislocation movement in austenite grains and the controlleddeformation-induced martensitic transformation. The low-carbon-partitioned large austenite grains increase the strength and ductility as a consequence of the combined martensitic transformation andhigh dislocation density-induced hardening and by interface strengthening. Additionally, high-carbonpartitioned small austenite grains enhance the strength and ductility by planar dislocation glide (inthe low strain regime) and by cross-slipping and delayed martensitic transformation (in the high strainregime). The concept of size-dependent dislocation engineering may provide different pathways for developing a wide range of heterogeneous-structured low-Mn lightweight steels, suggesting that LTP maybe desirable for broad industrial applications at an economic cost.