Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design...Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.展开更多
Photonic inverse design concerns the problem of finding photonic structures with target optical properties.However,traditional methods based on optimization algorithms are time-consuming and computationally expensive....Photonic inverse design concerns the problem of finding photonic structures with target optical properties.However,traditional methods based on optimization algorithms are time-consuming and computationally expensive.Recently,deep learning-based approaches have been developed to tackle the problem of inverse design efficiently.Although most of these neural network models have demonstrated high accuracy in different inverse design problems,no previous study has examined the potential effects under given constraints in nanomanufacturing.Additionally,the relative strength of different deep learning-based inverse design approaches has not been fully investigated.Here,we benchmark three commonly used deep learning models in inverse design:Tandem networks,Variational Auto-Encoders,and Generative Adversarial Networks.We provide detailed comparisons in terms of their accuracy,diversity,and robustness.We find that tandem networks and Variational Auto-Encoders give the best accuracy,while Generative Adversarial Networks lead to the most diverse predictions.Our findings could serve as a guideline for researchers to select the model that can best suit their design criteria and fabrication considerations.In addition,our code and data are publicly available,which could be used for future inverse design model development and benchmarking.展开更多
Microwave antennas are essential elements for various applications,such as telecommunication,radar,sensing,and wireless power transport.These antennas are conventionally manufactured on rigid substrates using opaque m...Microwave antennas are essential elements for various applications,such as telecommunication,radar,sensing,and wireless power transport.These antennas are conventionally manufactured on rigid substrates using opaque materials,such as metal strips,metallic tapes,or epoxy pastes;thus,prohibiting their use in flexible and wearable devices,and simultaneously limiting their integration into existing optoelectronic systems.Here,we demonstrate that mechanically flexible and optically transparent microwave antennas with high operational efficiencies can be readily fabricated using composite nanolayers deposited on common plastic substrates.The composite nanolayer structure consists of an ultra-thin copper-doped silver film sandwiched between two dielectric films of tantalum pentoxide and aluminum oxide.The material and thickness of each constituent layer are judiciously selected such that the whole structure exhibits an experimentally measured averaged visible transmittance as high as 98.94%compared to a bare plastic substrate,and simultaneously,a sheet resistance as low as 12.5Ω/sq.Four representative types of microwave antennas are implemented:an omnidirectional dipole antenna,unidirectional Yagi-Uda antenna,low-profile patch antenna,and Fabry-Pérot cavity antenna.These devices exhibit great mechanical flexibility with bending angle over 70°,high gain of up to 13.6 dBi,and large radiation efficiency of up to 84.5%.The proposed nano-engineered composites can be easily prepared over large areas on various types of substrates and simultaneously overcome the limitations of poor mechanical flexibility,low electrical conductivity,and reduced optical transparency usually faced by other constituent materials for flexible transparent microwave antennas.The demonstrated flexible microwave antennas have various applications ranging from fifth-generation and vehicular communication systems to bio-signal monitors and wearable electronics.展开更多
We present a new scheme for visibly-opaque but near-infrared-transmitting filters involving 7 layers based on one-dimensional ternary photonic crystals, with capabilities in reaching nearly 100% transmission efficienc...We present a new scheme for visibly-opaque but near-infrared-transmitting filters involving 7 layers based on one-dimensional ternary photonic crystals, with capabilities in reaching nearly 100% transmission efficiency in the near-infrared region. Different decorative reflection colors can be created by adding additional three layers while maintaining the near-infrared transmission performance. In addition, our proposed structural colors show great angular insensitivity up to ±60° for both transverse electric and transverse magnetic polarizations, which are highly desired in various fields. The facile strategy described here involves a simple deposit!on method for the fabrication, thereby having great potential in diverse applications such as image sensors, anti-counterfeit tag, and optical measurement systems.展开更多
In order to obtain a metasurface structure capable of filtering light of a specific wavelength range in the visible band,the traditional methods usually traverse the space consisting of possible designs,searching for ...In order to obtain a metasurface structure capable of filtering light of a specific wavelength range in the visible band,the traditional methods usually traverse the space consisting of possible designs,searching for a potenti ally satisfactory structure by performing iterative calculations to solve Maxwell's equations.In this article,we propose a systematic method based on neural networks that can complete an inverse design process to solve the problem.Compared with the traditional methods,our method is much faster while competent to encom-pass a high degree of freedom to generate device structures,which can ensure that the spectra of generated structures resemble the desired ones.展开更多
A mode transformer based on the quasi-vertical taper is designed to enable high coupling efficiency for interboardlevel optical interconnects involving single-mode polymer waveguides and standard single-mode fibers. A...A mode transformer based on the quasi-vertical taper is designed to enable high coupling efficiency for interboardlevel optical interconnects involving single-mode polymer waveguides and standard single-mode fibers. A triangular region fabricated above the waveguide is adopted to adiabatically transform the mode from the fiber into the polymer waveguide. The effects of the geometrical parameters of the taper, including width, height, tip width,etc., on the coupling efficiency are numerically investigated. Based on this, a quasi-vertical taper for the polymer rib waveguide system is designed, fabricated, and characterized. Coupling losses of 1.79 0.30 and 2.23 0.31 dB per coupler for the quasi-TM and quasi-TE mode, respectively, are measured across the optical communication C and L bands(1535 to 1610 nm). Low-cost packaging, leading to widespread utilization of polymeric photonicdevices, is envisioned for optical interconnect applications.展开更多
In this article, the optical enhancement effects of plasmonic nanostructures on OPV cells were reviewed as an effective way to resolve the mismatch problems between the short exciton diffusion length in organic semico...In this article, the optical enhancement effects of plasmonic nanostructures on OPV cells were reviewed as an effective way to resolve the mismatch problems between the short exciton diffusion length in organic semiconductors (around 10 nm) and the large thickness required to fully absorb sunlight (e.g. hundreds of nanometers). Especially, the performances of OPVs with plasmonic nanoparticles in photoactive and buffer layers and with periodic nanostructures were investigated. Furthermore, nanoimprint lithography-based nanofabrication processes that can easily control the dimension and uniformity of structures for large-area and uniform I^lasmonic nanostructures were demonstrated.展开更多
基金the National Science Foundation(PFI-008513 and FET-2309403)for the support of this work.
文摘Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.
文摘Photonic inverse design concerns the problem of finding photonic structures with target optical properties.However,traditional methods based on optimization algorithms are time-consuming and computationally expensive.Recently,deep learning-based approaches have been developed to tackle the problem of inverse design efficiently.Although most of these neural network models have demonstrated high accuracy in different inverse design problems,no previous study has examined the potential effects under given constraints in nanomanufacturing.Additionally,the relative strength of different deep learning-based inverse design approaches has not been fully investigated.Here,we benchmark three commonly used deep learning models in inverse design:Tandem networks,Variational Auto-Encoders,and Generative Adversarial Networks.We provide detailed comparisons in terms of their accuracy,diversity,and robustness.We find that tandem networks and Variational Auto-Encoders give the best accuracy,while Generative Adversarial Networks lead to the most diverse predictions.Our findings could serve as a guideline for researchers to select the model that can best suit their design criteria and fabrication considerations.In addition,our code and data are publicly available,which could be used for future inverse design model development and benchmarking.
文摘Microwave antennas are essential elements for various applications,such as telecommunication,radar,sensing,and wireless power transport.These antennas are conventionally manufactured on rigid substrates using opaque materials,such as metal strips,metallic tapes,or epoxy pastes;thus,prohibiting their use in flexible and wearable devices,and simultaneously limiting their integration into existing optoelectronic systems.Here,we demonstrate that mechanically flexible and optically transparent microwave antennas with high operational efficiencies can be readily fabricated using composite nanolayers deposited on common plastic substrates.The composite nanolayer structure consists of an ultra-thin copper-doped silver film sandwiched between two dielectric films of tantalum pentoxide and aluminum oxide.The material and thickness of each constituent layer are judiciously selected such that the whole structure exhibits an experimentally measured averaged visible transmittance as high as 98.94%compared to a bare plastic substrate,and simultaneously,a sheet resistance as low as 12.5Ω/sq.Four representative types of microwave antennas are implemented:an omnidirectional dipole antenna,unidirectional Yagi-Uda antenna,low-profile patch antenna,and Fabry-Pérot cavity antenna.These devices exhibit great mechanical flexibility with bending angle over 70°,high gain of up to 13.6 dBi,and large radiation efficiency of up to 84.5%.The proposed nano-engineered composites can be easily prepared over large areas on various types of substrates and simultaneously overcome the limitations of poor mechanical flexibility,low electrical conductivity,and reduced optical transparency usually faced by other constituent materials for flexible transparent microwave antennas.The demonstrated flexible microwave antennas have various applications ranging from fifth-generation and vehicular communication systems to bio-signal monitors and wearable electronics.
基金National Science Foundation Grant (No. CMMI-1727918) for the partial support of this workC. G. J. acknowledges the support by Rackham Graduate Student Research Grant from the University of Michigan.
文摘We present a new scheme for visibly-opaque but near-infrared-transmitting filters involving 7 layers based on one-dimensional ternary photonic crystals, with capabilities in reaching nearly 100% transmission efficiency in the near-infrared region. Different decorative reflection colors can be created by adding additional three layers while maintaining the near-infrared transmission performance. In addition, our proposed structural colors show great angular insensitivity up to ±60° for both transverse electric and transverse magnetic polarizations, which are highly desired in various fields. The facile strategy described here involves a simple deposit!on method for the fabrication, thereby having great potential in diverse applications such as image sensors, anti-counterfeit tag, and optical measurement systems.
文摘In order to obtain a metasurface structure capable of filtering light of a specific wavelength range in the visible band,the traditional methods usually traverse the space consisting of possible designs,searching for a potenti ally satisfactory structure by performing iterative calculations to solve Maxwell's equations.In this article,we propose a systematic method based on neural networks that can complete an inverse design process to solve the problem.Compared with the traditional methods,our method is much faster while competent to encom-pass a high degree of freedom to generate device structures,which can ensure that the spectra of generated structures resemble the desired ones.
基金supported by Air Force Office of Scientific Research (AFOSR) for supporting this work under the Small Business Technology Transfer Research (STTR) program (grant no. FA9550-14-C-0001)
文摘A mode transformer based on the quasi-vertical taper is designed to enable high coupling efficiency for interboardlevel optical interconnects involving single-mode polymer waveguides and standard single-mode fibers. A triangular region fabricated above the waveguide is adopted to adiabatically transform the mode from the fiber into the polymer waveguide. The effects of the geometrical parameters of the taper, including width, height, tip width,etc., on the coupling efficiency are numerically investigated. Based on this, a quasi-vertical taper for the polymer rib waveguide system is designed, fabricated, and characterized. Coupling losses of 1.79 0.30 and 2.23 0.31 dB per coupler for the quasi-TM and quasi-TE mode, respectively, are measured across the optical communication C and L bands(1535 to 1610 nm). Low-cost packaging, leading to widespread utilization of polymeric photonicdevices, is envisioned for optical interconnect applications.
基金support by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (No.2014R1A1A2056403)
文摘In this article, the optical enhancement effects of plasmonic nanostructures on OPV cells were reviewed as an effective way to resolve the mismatch problems between the short exciton diffusion length in organic semiconductors (around 10 nm) and the large thickness required to fully absorb sunlight (e.g. hundreds of nanometers). Especially, the performances of OPVs with plasmonic nanoparticles in photoactive and buffer layers and with periodic nanostructures were investigated. Furthermore, nanoimprint lithography-based nanofabrication processes that can easily control the dimension and uniformity of structures for large-area and uniform I^lasmonic nanostructures were demonstrated.