期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Expectation-maximization (EM) Algorithm Based on IMM Filtering with Adaptive Noise Covariance 被引量:5
1
作者 lei ming han chong-zhao 《自动化学报》 EI CSCD 北大核心 2006年第1期28-37,共10页
A novel method under the interactive multiple model (IMM) filtering framework is presented in this paper, in which the expectation-maximization (EM) algorithm is used to identify the process noise covariance Q online.... A novel method under the interactive multiple model (IMM) filtering framework is presented in this paper, in which the expectation-maximization (EM) algorithm is used to identify the process noise covariance Q online. For the existing IMM filtering theory, the matrix Q is determined by means of design experience, but Q is actually changed with the state of the maneuvering target. Meanwhile it is severely influenced by the environment around the target, i.e., it is a variable of time. Therefore, the experiential covariance Q can not represent the influence of state noise in the maneuvering process exactly. Firstly, it is assumed that the evolved state and the initial conditions of the system can be modeled by using Gaussian distribution, although the dynamic system is of a nonlinear measurement equation, and furthermore the EM algorithm based on IMM filtering with the Q identification online is proposed. Secondly, the truncated error analysis is performed. Finally, the Monte Carlo simulation results are given to show that the proposed algorithm outperforms the existing algorithms and the tracking precision for the maneuvering targets is improved efficiently. 展开更多
关键词 最大期望值 IMM滤波器 EM算法 参数估计 噪音识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部