The current research of the valveless piezoelectric pump focuses on increasing the flow rate and pressure differential. Compared with the valve piezoelectric pump, the valveless one has excellent performances in simpl...The current research of the valveless piezoelectric pump focuses on increasing the flow rate and pressure differential. Compared with the valve piezoelectric pump, the valveless one has excellent performances in simple structure, low cost, and easy miniaturization. So, their important development trend is the mitigation of their weakness, and the multi-function integration. The flow in a spiral tube element is sensitive to the element attitude caused by the Coriolis force, and that a valveless piezoelectric pump is designed by applying this phenomenon. The pump has gyroscopic effect, and has both the actuator function of fluid transfer and the sensor function, which can obtain the angular velocity when its attitude changes. First, the present paper analyzes the flow characteristics in the tube, obtains the calculation formula for the pump flow, and identifies the relationship between pump attitude and flow, which clarifies the impact of flow and driving voltage, frequency, spiral line type and element attitude, and verifies the gyroscopic effect of the pump. Then, the finite element simulation is used to verify the theory. Finally, a pump is fabricated for experimental testing of the relationship between pump attitude and pressure differential. Experimental results show that when Archimedes spiral θ=4π is selected for the tube design, and the rotation speed of the plate is 70 r/min, the pressure differential is 88.2 Pa, which is 1.5 times that of 0 r/min rotation speed. The spiral-tube-type valveless piezoelectric pump proposed can turn the element attitude into a form of pressure output, which is important for the multi-function integration of the valveless piezoelectric pump and for the development of civil gyroscope in the future.展开更多
In view of the fact that the traditional Hausdorff image matching algorithm is very sensitive to the image size as well as the unsatisfactory real-time performance in practical applications,an image matching algorithm...In view of the fact that the traditional Hausdorff image matching algorithm is very sensitive to the image size as well as the unsatisfactory real-time performance in practical applications,an image matching algorithm is proposed based on the combination of Yolov3.Firstly,the features of the reference image are selected for pretraining,and then the training results are used to extract the features of the real images before the coordinates of the center points of the feature area are used to complete the coarse matching.Finally,the Hausdorff algorithm is used to complete the fine image matching.Experiments show that the proposed algorithm significantly improves the speed and accuracy of image matching.Also,it is robust to rotation changes.展开更多
Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dim...Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dimensional combined feature is presented based on sequence image matching navigation.To balance between the distribution of high-dimensional combined features and the shortcomings of the only use of geometric relations,we propose a method based on Delaunay triangulation to improve the feature,and add the regional characteristics of the features together with their geometric characteristics.Finally,k-nearest neighbor(KNN)algorithm is adopted to optimize searching process.Simulation results show that the matching can be realized at the rotation angle of-8°to 8°and the scale factor of 0.9 to 1.1,and when the image size is 160 pixel×160 pixel,the matching time is less than 0.5 s.Therefore,the proposed algorithm can substantially reduce computational complexity,improve the matching speed,and exhibit robustness to the rotation and scale changes.展开更多
The scene matching navigation is a research focus in the field of autonomous navigation,but the real-time performance of image matching algorithm is difficult to meet the needs of real navigation systems.Therefore,thi...The scene matching navigation is a research focus in the field of autonomous navigation,but the real-time performance of image matching algorithm is difficult to meet the needs of real navigation systems.Therefore,this paper proposes a fast image matching algorithm.The algorithm improves the traditional line segment extraction algorithm and combines with the Delaunay triangulation method.By combining the geometric features of points and lines,the image feature redundancy is reduced.Then,the error with confidence criterion is analyzed and the matching process is completed.The simulation results show that the proposed algorithm can still work within 3°rotation and small scale variation.In addition,the matching time is less than 0.5 s when the image size is 256 pixel×256 pixel.The proposed algorithm is suitable for autonomous navigation systems with multiple feature distribution and higher real-time requirements.展开更多
A valveless piezoelectric pump with rotatable unsymmetrical slopes is developed in this research.It has the following features:The pump integrates driving and transporting,and it can mix different fluids while transpo...A valveless piezoelectric pump with rotatable unsymmetrical slopes is developed in this research.It has the following features:The pump integrates driving and transporting,and it can mix different fluids while transporting them.In this paper,firstly,the design of the valveless piezoelectric pump with rotatable unsymmetrical slopes was proposed,and the single-direction flow principle was explained.Then,the fluid mechanics model of the valveless piezoelectric pump with rotatable unsymmetrical slopes was established.Meanwhile,the numerical simulation of the pump was performed.Finally,the experiments on relationship between the rotation angles of the slope and the flow rates were conducted.The experimental results showed that the maximum flow was 32.32 mL min 1.The maximum relative error between the theoretical results and the experimental ones was 14.59%.For the relationship between rotation angles and flow ratio of two inlets,the relative error between the experimental and theoretical maxima was 3.75%.Thus,the experiments proved the feasibility of the pump design and verified the theory.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51075201,51205193,51375227)
文摘The current research of the valveless piezoelectric pump focuses on increasing the flow rate and pressure differential. Compared with the valve piezoelectric pump, the valveless one has excellent performances in simple structure, low cost, and easy miniaturization. So, their important development trend is the mitigation of their weakness, and the multi-function integration. The flow in a spiral tube element is sensitive to the element attitude caused by the Coriolis force, and that a valveless piezoelectric pump is designed by applying this phenomenon. The pump has gyroscopic effect, and has both the actuator function of fluid transfer and the sensor function, which can obtain the angular velocity when its attitude changes. First, the present paper analyzes the flow characteristics in the tube, obtains the calculation formula for the pump flow, and identifies the relationship between pump attitude and flow, which clarifies the impact of flow and driving voltage, frequency, spiral line type and element attitude, and verifies the gyroscopic effect of the pump. Then, the finite element simulation is used to verify the theory. Finally, a pump is fabricated for experimental testing of the relationship between pump attitude and pressure differential. Experimental results show that when Archimedes spiral θ=4π is selected for the tube design, and the rotation speed of the plate is 70 r/min, the pressure differential is 88.2 Pa, which is 1.5 times that of 0 r/min rotation speed. The spiral-tube-type valveless piezoelectric pump proposed can turn the element attitude into a form of pressure output, which is important for the multi-function integration of the valveless piezoelectric pump and for the development of civil gyroscope in the future.
基金supported by the Foundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics(No.kfjj20191506)。
文摘In view of the fact that the traditional Hausdorff image matching algorithm is very sensitive to the image size as well as the unsatisfactory real-time performance in practical applications,an image matching algorithm is proposed based on the combination of Yolov3.Firstly,the features of the reference image are selected for pretraining,and then the training results are used to extract the features of the real images before the coordinates of the center points of the feature area are used to complete the coarse matching.Finally,the Hausdorff algorithm is used to complete the fine image matching.Experiments show that the proposed algorithm significantly improves the speed and accuracy of image matching.Also,it is robust to rotation changes.
基金supported by the National Natural Science Foundations of China(Nos.51205193,51475221)
文摘Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dimensional combined feature is presented based on sequence image matching navigation.To balance between the distribution of high-dimensional combined features and the shortcomings of the only use of geometric relations,we propose a method based on Delaunay triangulation to improve the feature,and add the regional characteristics of the features together with their geometric characteristics.Finally,k-nearest neighbor(KNN)algorithm is adopted to optimize searching process.Simulation results show that the matching can be realized at the rotation angle of-8°to 8°and the scale factor of 0.9 to 1.1,and when the image size is 160 pixel×160 pixel,the matching time is less than 0.5 s.Therefore,the proposed algorithm can substantially reduce computational complexity,improve the matching speed,and exhibit robustness to the rotation and scale changes.
基金supported by the Fundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics (No.kfjj20191506)
文摘The scene matching navigation is a research focus in the field of autonomous navigation,but the real-time performance of image matching algorithm is difficult to meet the needs of real navigation systems.Therefore,this paper proposes a fast image matching algorithm.The algorithm improves the traditional line segment extraction algorithm and combines with the Delaunay triangulation method.By combining the geometric features of points and lines,the image feature redundancy is reduced.Then,the error with confidence criterion is analyzed and the matching process is completed.The simulation results show that the proposed algorithm can still work within 3°rotation and small scale variation.In addition,the matching time is less than 0.5 s when the image size is 256 pixel×256 pixel.The proposed algorithm is suitable for autonomous navigation systems with multiple feature distribution and higher real-time requirements.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50775109 and 51075201)the Important Projects of National Science Foundation of China (Grant No. 50735002)Open Fund of State Key Lab of Digital Manufacturing Equipment and Technology (Grant No. DMETKF2009002)
文摘A valveless piezoelectric pump with rotatable unsymmetrical slopes is developed in this research.It has the following features:The pump integrates driving and transporting,and it can mix different fluids while transporting them.In this paper,firstly,the design of the valveless piezoelectric pump with rotatable unsymmetrical slopes was proposed,and the single-direction flow principle was explained.Then,the fluid mechanics model of the valveless piezoelectric pump with rotatable unsymmetrical slopes was established.Meanwhile,the numerical simulation of the pump was performed.Finally,the experiments on relationship between the rotation angles of the slope and the flow rates were conducted.The experimental results showed that the maximum flow was 32.32 mL min 1.The maximum relative error between the theoretical results and the experimental ones was 14.59%.For the relationship between rotation angles and flow ratio of two inlets,the relative error between the experimental and theoretical maxima was 3.75%.Thus,the experiments proved the feasibility of the pump design and verified the theory.