Hydrothermal plume is an important constituent of seabed hydrothermal circulation and is also one of the characteristics of active hydrothermal vents. Portable Miniature Autonomous Plume Recorders (MAPR) attached to...Hydrothermal plume is an important constituent of seabed hydrothermal circulation and is also one of the characteristics of active hydrothermal vents. Portable Miniature Autonomous Plume Recorders (MAPR) attached to a towed deep-sea instrument was used to search for hydrothermal plumes and hydrothermal vents. We introduced the basic principle of MAPR based on deep towing technology to detect plumes, then analyzed the factors affecting the quality of the MAPR data and presented a data correction method for MAPR, including instrument location correction, noise reduction processing, system error elimination and seawater background reduction. Finally we applied the method to analyze MAPR data obtained during the Chinese DY115-21 cruise on R/VDayang Iin the “Precious Stone Mountain” hydrothermal field on the Gala-pagos Microplate. The results provided a better understanding of the distribution of the hydrothermal activ-ity in this field, indicating the presence of a new hydrothermal vent.展开更多
A seafloor hydrothermal field, named Deyin-1 later, near 15°S southern Mid-Atlantic Ridge(SMAR) was newly found during the 22 nd cruise carried out by the China Ocean Mineral Resources Research & Development A...A seafloor hydrothermal field, named Deyin-1 later, near 15°S southern Mid-Atlantic Ridge(SMAR) was newly found during the 22 nd cruise carried out by the China Ocean Mineral Resources Research & Development Association(COMRA). Sulfide samples were collected at three stations from the hydrothermal field during the26 th cruise in 2012. In this paper, mineralogical characteristics of the sulfides were analyzed with optical microscope, X-ray diffractometer, scanning electron microscope and electron microprobe to study the crystallization sequence of minerals and the process of hydrothermal mineralization. According to the difference of the ore-forming metal elements, the sulfide samples can be divided into three types:(1) the Ferich sulfide, which contains mainly pyrite and chalcopyrite;(2) the Fe-Cu-rich sulfide consisting predominantly of pyrite, chalcopyrite and isocubanite, with lesser amount of sphalerite, marmatite and pyrrhotine; and(3) the Fe-Zn-rich sulfide dominated by pyrite, sphalerite and marmatite, with variable amounts of chalcopyrite, isocubanite, pyrrhotine, marcasite, galena and gratonite. Mineral precipitations in these sulfides are in the sequence of chalcopyrite(isocubanite and possible coarse pyrite), fine pyrite,sphalerite(marmatite), galena, gratonite and then the minerals out of the dissolution. Two morphologically distinct generations(Py-I and Py-II) of pyrite are identified in each of the samples; inclusions of marmatite tend to exist in the coarse pyrite crystals(Py-I). Sphalerite in the Fe-Zn-rich sulfide is characterized by a"chalcopyrite disease" phenomenon. Mineral paragenetic relationships and a wide range of chemical compositions suggest that the environment of hydrothermal mineralization was largely changing. By comparison, the Fe-rich sulfide was formed in a relatively stable environment with a high temperature, but the conditions for the formation of the Fe-Cu-rich sulfide were variable. The Fe-Zn-rich sulfide was precipitated during the hydrothermal venting at relatively low temperature.展开更多
Study of petrophysical properties of rocks in seafioor hydrothermal fields has great significance for inves- tigation of seafloor hydrothermal activities, especially for polymetallic sulfides prospecting. In the prese...Study of petrophysical properties of rocks in seafioor hydrothermal fields has great significance for inves- tigation of seafloor hydrothermal activities, especially for polymetallic sulfides prospecting. In the present study, based on the current experimental conditions, we conducted systematic experiments to measure the magnetic susceptibility, electrical resistivity, porosity, density, as well as acoustic wave velocity of seafloor rocks and sulfides. Subsequently, we measured the physical characteristics of hydrothermal sulfides, basalts and peridotites which were collected from newly discovered seafloor hydrothermal fields at 49.6°E, 50.5°E, 5 1°E, 63.5°E, and 63.9°E of the Southwest Indian Ridge (SWIR). Previously available and newly collected data were combined to characterize the physical differences between polymetallic sulfides and rocks. We also discussed the impact of hydrothermal alteration on the bedrock and demonstrated how these petrophysical properties of rocks can help in geophysical prospecting of seafloor hydrothermal fields as indicators.展开更多
The ultraslow-spreading Southwest Indian Ridge (SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely ...The ultraslow-spreading Southwest Indian Ridge (SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely slow spreading rate, the easternmost SWIR was considered to be devoid of hydrothermal activity until the discovery of the inactive Mt. lourdanne hydrothermal field (27°51'S, 63°56'E) in 1998. During the COMRA DYl15-20 cruise in 2009, two additional hydrothermal fields (i.e., the Tiancheng (27°51'S, 63°55'E) and Tianzuo (27°57'S, 63°32'E) fields) were discovered. Further detailed investigations of these two hydrothermal sites were conducted by Chinese manned submersible liaolong in 2014-2015. The Tiancheng filed can he characterized as a low- temperature (up to 13.2℃) diffuse flow hydrothermal field, and is hosted by fractured basalts with hydrothermal fauna widespread on the seafloor. The Tianzuo hydrothermal field is an inactive sulfide field, which is hosted by ultramafic rocks and controlled by detachment fault. The discovery of the three hydrothermal fields around Segment #11 which receives more melt than the regional average, provided evidence for local enhanced magmatism providing heat source to drive hydrothermal circulation. We further imply that hydrothermal activity and sulfide deposits may be rather promising along the easternmost SWIR.展开更多
In this study, geochemical compositions of elements in sulfide samples collected from the Deyin-1 hydrothermal field near the 15?S southern Mid-Atlantic Ridge(SMAR) were analyzed by the X-ray fluorescence spectrometry...In this study, geochemical compositions of elements in sulfide samples collected from the Deyin-1 hydrothermal field near the 15?S southern Mid-Atlantic Ridge(SMAR) were analyzed by the X-ray fluorescence spectrometry(XRF) and inductively coupled plasma mass spectrometry(ICP-MS) to examine the enrichment regulations of ore-forming elements and hydrothermal mineralization. These sulfide precipitates can be classified macroscopically into three types: Fe-rich sulfide, Fe-Cu-rich sulfide and Fe-Zn-rich sulfide, and are characterized by the enrichment of base metal elements along with a sequence of Fe>Zn>Cu. Compared with sulfides from other hydrothermal fields on MAR, Zn concentrations of sulfides in the research area are significantly high, while Cu concentrations are relatively low. For all major, trace or rare-earth elements(REE), their concentrations and related characteristic parameters exhibit significant variations(up to one or two orders of magnitude), which indicates the sulfides from different hydrothermal vents or even a same station were formed at different stages of hydrothermal mineralization, and suggests the variations of chemical compositions of the hydrothermal fluid with respect to time. The hydrothermal temperatures of sulfides precipitation decreased gradually from station TVG10(st.TVG10) to st.TVG12, and to st.TVG11, indicating that the precipitation of hydrothermal sulfides is subjected to conditions changed from high temperature to low temperature, and that the hydrothermal activity of study area was at the late stage of a general trend of evolution from strong to weak. The abnormally low concentrations of REE in sulfides and their similar chondrite-normalized REE patterns show that REEs in all sulfides were derived from a same source, but underwent different processes of migration or enrichment, or sulfides were formed at different stages of hydrothermal mineralization. The sulfides collected from the active hydrothermal vent were mainly attributed to precipitating directly from the hydrothermal fluid, while those collected from the extinct hydrothermal chimney might have already been altered by the seawater. Generally, ore-forming elements in the sulfides can be divided into three groups: Fe-based element group, Cu-based element group and Zn-based element group. The first group includes Fe, Mn, Cr, Mo, Sn, Rb and bio-enriching elements, such as P and Si, reflecting the similar characteristics to Fe in the study area. And the second group contains Cu, W, Co, Se, Te and Bi, suggesting the similar behavior with Cu. Moreover, the third group includes Zn, Hf, Hg, Cd, Ta, Ga, Pb, As, Ag, Ni and Sb, which indicates the geochemical characteristics of most dispersed trace elements controlled by Zn-bearing minerals to some extent.展开更多
Hydrothermal plumes released from the eruption of sea floor hydrothermal fluids contain large amounts of oreforming materials. They precipitate within certain distances from the hydrothermal vent. Six surficial sedime...Hydrothermal plumes released from the eruption of sea floor hydrothermal fluids contain large amounts of oreforming materials. They precipitate within certain distances from the hydrothermal vent. Six surficial sediment samples from the Southwest Indian Ridge(SWIR) were analyzed by a portable X-ray fluorescence(PXRF) analyzer on board to find a favorable method fast and efficient enough for sea floor sulfide sediment geochemical exploration. These sediments were sampled near, at a moderate distance from, or far away from hydrothermal vents. The results demonstrate that the PXRF is effective in determining the enrichment characteristics of the oreforming elements in the calcareous sediments from the mid-ocean ridge. Sediment samples(〉40 mesh) have high levels of elemental copper, zinc, iron, and manganese, and levels of these elements in sediments finer than 40 mesh are lower and relatively stable. This may be due to relatively high levels of basalt debris/glass in the coarse sediments, which are consistent with the results obtained by microscopic observation. The results also show clear zoning of elements copper, zinc, arsenic, iron, and manganese in the surficial sediments around the hydrothermal vent. Sediments near the vent show relatively high content of the ore-forming elements and either high ratios of copper to iron content and zinc to iron content or high ratios of copper to manganese content and zinc to manganese content. These findings show that the content of the ore-forming elements in the sediments around hydrothermal vents are mainly influenced by the distance of sediments to the vent, rather than grain size. In this way, the PXRF analysis of surface sediment geochemistry is found to satisfy the requirements of recognition geochemical anomaly in mid-ocean ridge sediments. Sediments with diameters finer than 40 mesh should be used as analytical samples in the geochemical exploration for hydrothermal vents on mid-oceanic ridges. The results concerning copper, zinc, arsenic, iron, and manganese and their ratio features can be used as indicators in sediment geochemical exploration of seafloor sulfides.展开更多
Seismic monitoring using ocean bottom seismometers(OBS) is an efficient method for investigating earthquakes in mid-ocean ridge far away from land. Clock synchronization among the OBSs is difficult without direct co...Seismic monitoring using ocean bottom seismometers(OBS) is an efficient method for investigating earthquakes in mid-ocean ridge far away from land. Clock synchronization among the OBSs is difficult without direct communication because electromagnetic signals cannot propagate efficiently in water. Time correction can be estimated through global positioning system(GPS) synchronization if clock drift is linear before and after the deployment. However, some OBSs in the experiments at the southwest Indian ridge(SWIR) on the Chinese DY125-34 cruise had not been re-synchronized from GPS after recovery. So we attempted to estimate clock drift between each station pairs using time symmetry analysis(TSA) based on ambient noise cross-correlation. We tested the feasibility of the TSA method by analyzing daily noise cross-correlation functions(NCFs) that extract from the data of another OBS experiment on the Chinese DY125-40 cruise with known clock drift and the same deployment site. The results suggest that the NCFs' travel time of surface wave between any two stations are symmetrical and have an opposite growing direction with the date. The influence of different band-pass filters,different components and different normalized methods was discussed. The TSA method appeared to be optimal for the hydrophone data within the period band of 2–5 s in dozens of km-scale interstation distances. A significant clock drift of ~2 s was estimated between OBSs sets through linear regression during a 108-d deployment on the Chinese cruise DY125-34. Time correction of the OBS by the ambient noise cross-correlation was demonstrated as a practical approach with the appropriate parameters in case of no GPS re-synchronization.展开更多
基金The National Basic Research Program of China(973 Program)under contract No.2012CB417305China Ocean Mineral Resources R&D Association"Twelfth Five-Year"Major Program under contract Nos DY125-11-R-01 and DY125-11-R-05+1 种基金the Natural Science Foundation of Zhejiang Province under contract No.LY12D06006the scientific research fund of the Second Institute of Oceanography under contract No.JG1203
文摘Hydrothermal plume is an important constituent of seabed hydrothermal circulation and is also one of the characteristics of active hydrothermal vents. Portable Miniature Autonomous Plume Recorders (MAPR) attached to a towed deep-sea instrument was used to search for hydrothermal plumes and hydrothermal vents. We introduced the basic principle of MAPR based on deep towing technology to detect plumes, then analyzed the factors affecting the quality of the MAPR data and presented a data correction method for MAPR, including instrument location correction, noise reduction processing, system error elimination and seawater background reduction. Finally we applied the method to analyze MAPR data obtained during the Chinese DY115-21 cruise on R/VDayang Iin the “Precious Stone Mountain” hydrothermal field on the Gala-pagos Microplate. The results provided a better understanding of the distribution of the hydrothermal activ-ity in this field, indicating the presence of a new hydrothermal vent.
基金The National Basic Research Program(973 Program)of China under contract No.2013CB429702the National Oceanic Major Project of 12th Five Year under contract No.DY125-11-R-05
文摘A seafloor hydrothermal field, named Deyin-1 later, near 15°S southern Mid-Atlantic Ridge(SMAR) was newly found during the 22 nd cruise carried out by the China Ocean Mineral Resources Research & Development Association(COMRA). Sulfide samples were collected at three stations from the hydrothermal field during the26 th cruise in 2012. In this paper, mineralogical characteristics of the sulfides were analyzed with optical microscope, X-ray diffractometer, scanning electron microscope and electron microprobe to study the crystallization sequence of minerals and the process of hydrothermal mineralization. According to the difference of the ore-forming metal elements, the sulfide samples can be divided into three types:(1) the Ferich sulfide, which contains mainly pyrite and chalcopyrite;(2) the Fe-Cu-rich sulfide consisting predominantly of pyrite, chalcopyrite and isocubanite, with lesser amount of sphalerite, marmatite and pyrrhotine; and(3) the Fe-Zn-rich sulfide dominated by pyrite, sphalerite and marmatite, with variable amounts of chalcopyrite, isocubanite, pyrrhotine, marcasite, galena and gratonite. Mineral precipitations in these sulfides are in the sequence of chalcopyrite(isocubanite and possible coarse pyrite), fine pyrite,sphalerite(marmatite), galena, gratonite and then the minerals out of the dissolution. Two morphologically distinct generations(Py-I and Py-II) of pyrite are identified in each of the samples; inclusions of marmatite tend to exist in the coarse pyrite crystals(Py-I). Sphalerite in the Fe-Zn-rich sulfide is characterized by a"chalcopyrite disease" phenomenon. Mineral paragenetic relationships and a wide range of chemical compositions suggest that the environment of hydrothermal mineralization was largely changing. By comparison, the Fe-rich sulfide was formed in a relatively stable environment with a high temperature, but the conditions for the formation of the Fe-Cu-rich sulfide were variable. The Fe-Zn-rich sulfide was precipitated during the hydrothermal venting at relatively low temperature.
基金The National Basic Research Program of China (973 Program) under contract No.2012CB417305COMRA Major Project under contract No.DY125-11-R-01-05the National Natural Science Foundation of China under contract Nos 49906004 and 41104073
文摘Study of petrophysical properties of rocks in seafioor hydrothermal fields has great significance for inves- tigation of seafloor hydrothermal activities, especially for polymetallic sulfides prospecting. In the present study, based on the current experimental conditions, we conducted systematic experiments to measure the magnetic susceptibility, electrical resistivity, porosity, density, as well as acoustic wave velocity of seafloor rocks and sulfides. Subsequently, we measured the physical characteristics of hydrothermal sulfides, basalts and peridotites which were collected from newly discovered seafloor hydrothermal fields at 49.6°E, 50.5°E, 5 1°E, 63.5°E, and 63.9°E of the Southwest Indian Ridge (SWIR). Previously available and newly collected data were combined to characterize the physical differences between polymetallic sulfides and rocks. We also discussed the impact of hydrothermal alteration on the bedrock and demonstrated how these petrophysical properties of rocks can help in geophysical prospecting of seafloor hydrothermal fields as indicators.
基金The National Key Research and Development Program of China under contract Nos 2017YFC0306603,2018YFC0309901,2016YFC0304905,2017YFC0306803 and 2018YFC0309902the China Ocean Mineral Resources Research and Development Association Major Project under contract Nos DY135-S1-1-01 and DY135-S1-1-02
文摘The ultraslow-spreading Southwest Indian Ridge (SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely slow spreading rate, the easternmost SWIR was considered to be devoid of hydrothermal activity until the discovery of the inactive Mt. lourdanne hydrothermal field (27°51'S, 63°56'E) in 1998. During the COMRA DYl15-20 cruise in 2009, two additional hydrothermal fields (i.e., the Tiancheng (27°51'S, 63°55'E) and Tianzuo (27°57'S, 63°32'E) fields) were discovered. Further detailed investigations of these two hydrothermal sites were conducted by Chinese manned submersible liaolong in 2014-2015. The Tiancheng filed can he characterized as a low- temperature (up to 13.2℃) diffuse flow hydrothermal field, and is hosted by fractured basalts with hydrothermal fauna widespread on the seafloor. The Tianzuo hydrothermal field is an inactive sulfide field, which is hosted by ultramafic rocks and controlled by detachment fault. The discovery of the three hydrothermal fields around Segment #11 which receives more melt than the regional average, provided evidence for local enhanced magmatism providing heat source to drive hydrothermal circulation. We further imply that hydrothermal activity and sulfide deposits may be rather promising along the easternmost SWIR.
基金supported by the National Basic Research Program of China (No.2013CB429702)the National Oceanic Major Project of the China Ocean Mineral Resources Research and Development Association (No.DY125-11-R-05)
文摘In this study, geochemical compositions of elements in sulfide samples collected from the Deyin-1 hydrothermal field near the 15?S southern Mid-Atlantic Ridge(SMAR) were analyzed by the X-ray fluorescence spectrometry(XRF) and inductively coupled plasma mass spectrometry(ICP-MS) to examine the enrichment regulations of ore-forming elements and hydrothermal mineralization. These sulfide precipitates can be classified macroscopically into three types: Fe-rich sulfide, Fe-Cu-rich sulfide and Fe-Zn-rich sulfide, and are characterized by the enrichment of base metal elements along with a sequence of Fe>Zn>Cu. Compared with sulfides from other hydrothermal fields on MAR, Zn concentrations of sulfides in the research area are significantly high, while Cu concentrations are relatively low. For all major, trace or rare-earth elements(REE), their concentrations and related characteristic parameters exhibit significant variations(up to one or two orders of magnitude), which indicates the sulfides from different hydrothermal vents or even a same station were formed at different stages of hydrothermal mineralization, and suggests the variations of chemical compositions of the hydrothermal fluid with respect to time. The hydrothermal temperatures of sulfides precipitation decreased gradually from station TVG10(st.TVG10) to st.TVG12, and to st.TVG11, indicating that the precipitation of hydrothermal sulfides is subjected to conditions changed from high temperature to low temperature, and that the hydrothermal activity of study area was at the late stage of a general trend of evolution from strong to weak. The abnormally low concentrations of REE in sulfides and their similar chondrite-normalized REE patterns show that REEs in all sulfides were derived from a same source, but underwent different processes of migration or enrichment, or sulfides were formed at different stages of hydrothermal mineralization. The sulfides collected from the active hydrothermal vent were mainly attributed to precipitating directly from the hydrothermal fluid, while those collected from the extinct hydrothermal chimney might have already been altered by the seawater. Generally, ore-forming elements in the sulfides can be divided into three groups: Fe-based element group, Cu-based element group and Zn-based element group. The first group includes Fe, Mn, Cr, Mo, Sn, Rb and bio-enriching elements, such as P and Si, reflecting the similar characteristics to Fe in the study area. And the second group contains Cu, W, Co, Se, Te and Bi, suggesting the similar behavior with Cu. Moreover, the third group includes Zn, Hf, Hg, Cd, Ta, Ga, Pb, As, Ag, Ni and Sb, which indicates the geochemical characteristics of most dispersed trace elements controlled by Zn-bearing minerals to some extent.
基金The Open Fund of Key Laboratory of Marine Mineral Resources,Ministry of Land and Resources under contract No.KLMMR-2015-B-03the China Ocean Mineral Resources Research and Development Association Project under contract Nos DY125-11-R-01 and DY125-11-R-05the National Basic Research Program(973 program)of China under contract No.2012CB417305
文摘Hydrothermal plumes released from the eruption of sea floor hydrothermal fluids contain large amounts of oreforming materials. They precipitate within certain distances from the hydrothermal vent. Six surficial sediment samples from the Southwest Indian Ridge(SWIR) were analyzed by a portable X-ray fluorescence(PXRF) analyzer on board to find a favorable method fast and efficient enough for sea floor sulfide sediment geochemical exploration. These sediments were sampled near, at a moderate distance from, or far away from hydrothermal vents. The results demonstrate that the PXRF is effective in determining the enrichment characteristics of the oreforming elements in the calcareous sediments from the mid-ocean ridge. Sediment samples(〉40 mesh) have high levels of elemental copper, zinc, iron, and manganese, and levels of these elements in sediments finer than 40 mesh are lower and relatively stable. This may be due to relatively high levels of basalt debris/glass in the coarse sediments, which are consistent with the results obtained by microscopic observation. The results also show clear zoning of elements copper, zinc, arsenic, iron, and manganese in the surficial sediments around the hydrothermal vent. Sediments near the vent show relatively high content of the ore-forming elements and either high ratios of copper to iron content and zinc to iron content or high ratios of copper to manganese content and zinc to manganese content. These findings show that the content of the ore-forming elements in the sediments around hydrothermal vents are mainly influenced by the distance of sediments to the vent, rather than grain size. In this way, the PXRF analysis of surface sediment geochemistry is found to satisfy the requirements of recognition geochemical anomaly in mid-ocean ridge sediments. Sediments with diameters finer than 40 mesh should be used as analytical samples in the geochemical exploration for hydrothermal vents on mid-oceanic ridges. The results concerning copper, zinc, arsenic, iron, and manganese and their ratio features can be used as indicators in sediment geochemical exploration of seafloor sulfides.
基金China Ocean Mineral Resources R&D Association Major Project under contract No.DY135-S1-01the National Natural Science Foundation of China under contract Nos 41506078,41706042 and 41522404the Basic Research Foundation of Second Institute of Oceanography,SOA under contract No.JG0608
文摘Seismic monitoring using ocean bottom seismometers(OBS) is an efficient method for investigating earthquakes in mid-ocean ridge far away from land. Clock synchronization among the OBSs is difficult without direct communication because electromagnetic signals cannot propagate efficiently in water. Time correction can be estimated through global positioning system(GPS) synchronization if clock drift is linear before and after the deployment. However, some OBSs in the experiments at the southwest Indian ridge(SWIR) on the Chinese DY125-34 cruise had not been re-synchronized from GPS after recovery. So we attempted to estimate clock drift between each station pairs using time symmetry analysis(TSA) based on ambient noise cross-correlation. We tested the feasibility of the TSA method by analyzing daily noise cross-correlation functions(NCFs) that extract from the data of another OBS experiment on the Chinese DY125-40 cruise with known clock drift and the same deployment site. The results suggest that the NCFs' travel time of surface wave between any two stations are symmetrical and have an opposite growing direction with the date. The influence of different band-pass filters,different components and different normalized methods was discussed. The TSA method appeared to be optimal for the hydrophone data within the period band of 2–5 s in dozens of km-scale interstation distances. A significant clock drift of ~2 s was estimated between OBSs sets through linear regression during a 108-d deployment on the Chinese cruise DY125-34. Time correction of the OBS by the ambient noise cross-correlation was demonstrated as a practical approach with the appropriate parameters in case of no GPS re-synchronization.