It is generally believed that the lithospheric mantle and the mantle transition zone are important carbon reservoirs.However,the location of carbon storage in Earth's interior and the reasons for carbon enrichment...It is generally believed that the lithospheric mantle and the mantle transition zone are important carbon reservoirs.However,the location of carbon storage in Earth's interior and the reasons for carbon enrichment remain unclear.In this study,we report CO_(2)-rich olivine-hosted melt inclusions in the mantle xenoliths of late Cenozoic basalts from the Penglai area,Hainan Province,which may shed some light on the carbon enrichment process in the lithospheric mantle.We also present a detailed petrological and geochemical investigation of the late Cenozoic basalts and mantle xenoliths from northern Hainan Island.The collected samples of late Cenozoic Hainan Island basalts belong to both alkaline and subalkaline series,showing fractionated REE patterns with high(La/Yb)_(N)values of 3.52–11.77,which are typical for OIB.Based on Al-in-olivine thermometry,the temperatures estimated for the mantle xenoliths can be divided into two groups.One group has temperatures of less than 1050℃,and the other group has temperature ranging from 1050℃to 1282℃.Clinopyroxene(La/Yb)_(N)–Ti/Eu and clinopyroxene Ca/Al–Mg^(#)diagrams indicate that the mantle peridotite experienced metasomatism from both silicate and carbonate melts.Melt inclusions in the olivine of mantle xenoliths include(1)CO_(2)bubble–rich melt inclusions;(2)multiphase melt inclusions(glass+CO_(2)bubble+daughter minerals);(3)pure glass melt inclusions.Magnesite is a daughter mineral in the olivine-hosted melt inclusions,which could be interpreted as a secondary mineral formed by the interactions of CO_(2)-rich fluids with an olivine host,due to post-entrapment effects.The glasses in olivine-hosted melt inclusions have high SiO_(2)contents(60.21–77.72 wt%).Our results suggest that a considerable amount of CO_(2)-rich melt inclusions are captured in the lithospheric mantle during metasomatism.The lithospheric mantle can therefore act as is a‘carbon trap',with much CO_(2)being absorbed by the lithospheric mantle in this way.展开更多
The waste coffee-grounds carbon(WCGC)was prepared with H_(3)PO_(4)treated using waste coffee-grounds as precursor.Its adsorption ability was studied using phenol as test molecule.The influence of H_(3)PO_(4)treated,ca...The waste coffee-grounds carbon(WCGC)was prepared with H_(3)PO_(4)treated using waste coffee-grounds as precursor.Its adsorption ability was studied using phenol as test molecule.The influence of H_(3)PO_(4)treated,calcined temperature,the initial phenol concentration,the doge of carbon and original pH values on phenol adsorption ability were investigated.Characterization of WCGC was performed by N_(2)adsorption isotherms,Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),and X-ray diffraction(XRD)techniques.First,the second order and Weber-Morris model reaction rate models were used to estimate the WCGC adsorption ability.The results show that the produced WCGC(700℃,2 h)has been graphitized and the layered structure increased BET surface to 435.98 m^(2)/g and adsorption phenol ability.The initial phenol concentration is 50 mg/L,the amount of WCGC(700℃,2 h)is 0.2 g,and the phenol adsorption rate is 97%after 270 min and no intermediate product formation.The adsorption kinetics of the selected WCGC is best fitted by the Weber-Morris model.展开更多
DAPTMGY(DTY)is an oligopeptide derived from marine microalgae with proven potential to combat oxidative stress in previous research.The composition,ordering,and active sites of amino acids play a key role in activity ...DAPTMGY(DTY)is an oligopeptide derived from marine microalgae with proven potential to combat oxidative stress in previous research.The composition,ordering,and active sites of amino acids play a key role in activity studies and are also the research trends in recent years.As an oligopeptide with a molecular weight of less than 1000 Da,DTY is of great significance to explore the active site and structure-activity relationship.This study used quantum mechanics to optimize DTY’s structure and predict the active site through molecular orbits,energy,and charge.In addition,an LPS-treated HUVEC cell was established as an oxidative-stress model.DTY could reduce mitochondrial oxidative stress and inhibit ROS production by enhancing the antioxidant enzymes SOD,GPX,and HO-1.Moreover,it was confirmed to inhibit inflammation and apoptosis through the NF-κB and MAPK signaling pathways.Lastly,the correlation of the oligopeptide DTY’s active site and antioxidative-stress activity was verified by molecular docking,showing that hydrogen bonding is the main force,which was also the main factor for antioxidant activity.展开更多
基金supported by the National Key Research and Development Project(Grant.No.2019YFA0708503)。
文摘It is generally believed that the lithospheric mantle and the mantle transition zone are important carbon reservoirs.However,the location of carbon storage in Earth's interior and the reasons for carbon enrichment remain unclear.In this study,we report CO_(2)-rich olivine-hosted melt inclusions in the mantle xenoliths of late Cenozoic basalts from the Penglai area,Hainan Province,which may shed some light on the carbon enrichment process in the lithospheric mantle.We also present a detailed petrological and geochemical investigation of the late Cenozoic basalts and mantle xenoliths from northern Hainan Island.The collected samples of late Cenozoic Hainan Island basalts belong to both alkaline and subalkaline series,showing fractionated REE patterns with high(La/Yb)_(N)values of 3.52–11.77,which are typical for OIB.Based on Al-in-olivine thermometry,the temperatures estimated for the mantle xenoliths can be divided into two groups.One group has temperatures of less than 1050℃,and the other group has temperature ranging from 1050℃to 1282℃.Clinopyroxene(La/Yb)_(N)–Ti/Eu and clinopyroxene Ca/Al–Mg^(#)diagrams indicate that the mantle peridotite experienced metasomatism from both silicate and carbonate melts.Melt inclusions in the olivine of mantle xenoliths include(1)CO_(2)bubble–rich melt inclusions;(2)multiphase melt inclusions(glass+CO_(2)bubble+daughter minerals);(3)pure glass melt inclusions.Magnesite is a daughter mineral in the olivine-hosted melt inclusions,which could be interpreted as a secondary mineral formed by the interactions of CO_(2)-rich fluids with an olivine host,due to post-entrapment effects.The glasses in olivine-hosted melt inclusions have high SiO_(2)contents(60.21–77.72 wt%).Our results suggest that a considerable amount of CO_(2)-rich melt inclusions are captured in the lithospheric mantle during metasomatism.The lithospheric mantle can therefore act as is a‘carbon trap',with much CO_(2)being absorbed by the lithospheric mantle in this way.
基金Funded by Yunnan Provincial Agricultural Joint Project(No.2018FG001-051)Yunnan Provincial Department of Education Research Fund(No.2020Y0414)
文摘The waste coffee-grounds carbon(WCGC)was prepared with H_(3)PO_(4)treated using waste coffee-grounds as precursor.Its adsorption ability was studied using phenol as test molecule.The influence of H_(3)PO_(4)treated,calcined temperature,the initial phenol concentration,the doge of carbon and original pH values on phenol adsorption ability were investigated.Characterization of WCGC was performed by N_(2)adsorption isotherms,Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),and X-ray diffraction(XRD)techniques.First,the second order and Weber-Morris model reaction rate models were used to estimate the WCGC adsorption ability.The results show that the produced WCGC(700℃,2 h)has been graphitized and the layered structure increased BET surface to 435.98 m^(2)/g and adsorption phenol ability.The initial phenol concentration is 50 mg/L,the amount of WCGC(700℃,2 h)is 0.2 g,and the phenol adsorption rate is 97%after 270 min and no intermediate product formation.The adsorption kinetics of the selected WCGC is best fitted by the Weber-Morris model.
基金The research was funded by the 2020 Shenzhen International Scientific and Technological Cooperation R&D Project(No.GJHZ20190823111601682)the Natural Science Foundation of Guangdong Province(No.2020A 1515011075)+2 种基金It was supported by the Special Funds for the‘Cultivation of Guangdong College Students’Scientific and Technological Innovation(‘Climbing Program’Special Funds No.pdjh2022a0232)The study also was funded by the Postgraduate Education Innovation Project of Guangdong Ocean University(No.2021148)Innovative Training Program for College Students of Guangdong Ocean University(No.S202210566067)。
文摘DAPTMGY(DTY)is an oligopeptide derived from marine microalgae with proven potential to combat oxidative stress in previous research.The composition,ordering,and active sites of amino acids play a key role in activity studies and are also the research trends in recent years.As an oligopeptide with a molecular weight of less than 1000 Da,DTY is of great significance to explore the active site and structure-activity relationship.This study used quantum mechanics to optimize DTY’s structure and predict the active site through molecular orbits,energy,and charge.In addition,an LPS-treated HUVEC cell was established as an oxidative-stress model.DTY could reduce mitochondrial oxidative stress and inhibit ROS production by enhancing the antioxidant enzymes SOD,GPX,and HO-1.Moreover,it was confirmed to inhibit inflammation and apoptosis through the NF-κB and MAPK signaling pathways.Lastly,the correlation of the oligopeptide DTY’s active site and antioxidative-stress activity was verified by molecular docking,showing that hydrogen bonding is the main force,which was also the main factor for antioxidant activity.