The self-monitoring application of asphalt concrete containing graphite and carbon fibers using indirect tensile test and wheel rolling test were introduced. The experiment results indicate that this kind of pitch-bas...The self-monitoring application of asphalt concrete containing graphite and carbon fibers using indirect tensile test and wheel rolling test were introduced. The experiment results indicate that this kind of pitch-based composite is effective for strain/stress self-monitoring. In the indirect tensile test, for a completely conductive asphalt concrete specimen, the piezoresistivity was very weak and slightly positive, which meant the resistivity increase with the increment of tensile strain at all stress/strain amplitudes, with the gage factor as high as 6. The strain self-sensing ability was superior in the case of higher graphite content. However, when the conductive concrete was embedded into common asphalt concrete specimen as a partial structure function, the piezoresistivity was positive at all stress/strain amplitudes and with the gage factor of 13, which was much higher than that of completely conductive specimen. Thus, the strain self-sensing ability was superior when conductive asphalt concrete was taken in as a partial structure function. In the wheel-rolling test, the piezoresistivity was highly positive. At any stress amplitude, the piezoresistivity was strong, with the gage factor as high as 100, which was higher for a stress amplitude of 0.7 MPa than that of 0.5 MPa.展开更多
The results of field observation carried out in May 2003 were used to examine pH and total alkalinity behaviors in the Changjiang Estuary. It was showed that pH and total alkalinity took on clear spatial variations in...The results of field observation carried out in May 2003 were used to examine pH and total alkalinity behaviors in the Changjiang Estuary. It was showed that pH and total alkalinity took on clear spatial variations in values with the minima in the low salinity region. Like salinity, transect distributions of pH and total alkalinity (TA) in a downriver direction had a sharp gradient each. These gradients appeared in such a sequence that the TA gradient was earlier than salinity and pH gradients, and the salinity gradient was earlier than the pH gradient. These distribution characteristics seemed to be strongly influenced by the mixing process of freshwater and seawater, for both pH and total alkalinity had significant linear relationships with salinity and temperature. For pH, phytoplankton activities also had a significant impact upon its spatial distribution. During a period of 48 h, pH and total alkalinity changed within wide ranges for every layer of the two anchor stations, namely, Stas 13 and 20, which were located at the mixed water mass and seawater mass, respectively. For both Stas 13 and 20, pH and TA fluctuation of every layer could be very wide during a 4 h period. As a whole, the data of the two anchor stations showed that neither variations in salinity and temperature nor phytoplankton activities were the main factors strongly influencing the total alkalinity temporal variability on a small time scale. The data of Sta. 20 implied that both salinity variation and phytoplankton activities had a significant influence on pH temporal variability, but the same conclusion could not be drawn from the data of Sta. 13.展开更多
A mechanical model to control the top-coal deformation is established in accordance with the structural characters of the gob-side entry surrounding rock for the fully-mechanic top-coal caving; the analytical solution...A mechanical model to control the top-coal deformation is established in accordance with the structural characters of the gob-side entry surrounding rock for the fully-mechanic top-coal caving; the analytical solution of top coal roof-sag curve is deduced with Winkler elastic foundation beam model. By means of a calculating and analytic program, the top coal roof-sag values are calculated under the conditions of different supporting intensities, widths of narrow pillars and stiffness of top coal; meanwhile, the relationship between the roof-sag values and supporting intensity, width of narrow pillars and stiffness of top coal is analyzed as well. With the actual situation of the gob-side entry taken into consideration, the parameters of top-coal control are determined and a supporting plan is proposed for the top-coal control,which is proved to be reliable and effective by on-site verification. Some theoretical guidance and advice are put forward for the top-coal deformation control in gob-side entry for fully mechanized top-coal caving face.展开更多
基金the Outstanding Youth Foundation of Hubei Province(No.2004ABB019)Program for New Century Excellent Talents in University,China(No.NCET-05-0665)
文摘The self-monitoring application of asphalt concrete containing graphite and carbon fibers using indirect tensile test and wheel rolling test were introduced. The experiment results indicate that this kind of pitch-based composite is effective for strain/stress self-monitoring. In the indirect tensile test, for a completely conductive asphalt concrete specimen, the piezoresistivity was very weak and slightly positive, which meant the resistivity increase with the increment of tensile strain at all stress/strain amplitudes, with the gage factor as high as 6. The strain self-sensing ability was superior in the case of higher graphite content. However, when the conductive concrete was embedded into common asphalt concrete specimen as a partial structure function, the piezoresistivity was positive at all stress/strain amplitudes and with the gage factor of 13, which was much higher than that of completely conductive specimen. Thus, the strain self-sensing ability was superior when conductive asphalt concrete was taken in as a partial structure function. In the wheel-rolling test, the piezoresistivity was highly positive. At any stress amplitude, the piezoresistivity was strong, with the gage factor as high as 100, which was higher for a stress amplitude of 0.7 MPa than that of 0.5 MPa.
基金This study was supported by the Qingdao Special Program for Leading Scientists under contract No.04-3-JJ-03the Knowledge Innovation Program of the Chinese Academy of Sciences under contract No.KZCX1-SW-01-08the“100 Talents Project”of the Chinese Academy of Sciences and the National Science Foundation for Outstanding Young Scientists of China under contract No.49925614.
文摘The results of field observation carried out in May 2003 were used to examine pH and total alkalinity behaviors in the Changjiang Estuary. It was showed that pH and total alkalinity took on clear spatial variations in values with the minima in the low salinity region. Like salinity, transect distributions of pH and total alkalinity (TA) in a downriver direction had a sharp gradient each. These gradients appeared in such a sequence that the TA gradient was earlier than salinity and pH gradients, and the salinity gradient was earlier than the pH gradient. These distribution characteristics seemed to be strongly influenced by the mixing process of freshwater and seawater, for both pH and total alkalinity had significant linear relationships with salinity and temperature. For pH, phytoplankton activities also had a significant impact upon its spatial distribution. During a period of 48 h, pH and total alkalinity changed within wide ranges for every layer of the two anchor stations, namely, Stas 13 and 20, which were located at the mixed water mass and seawater mass, respectively. For both Stas 13 and 20, pH and TA fluctuation of every layer could be very wide during a 4 h period. As a whole, the data of the two anchor stations showed that neither variations in salinity and temperature nor phytoplankton activities were the main factors strongly influencing the total alkalinity temporal variability on a small time scale. The data of Sta. 20 implied that both salinity variation and phytoplankton activities had a significant influence on pH temporal variability, but the same conclusion could not be drawn from the data of Sta. 13.
基金funded by the National Natural Science Foundation of China(No.51374201,51323004)the State Key Development Program for Basic Research of China(No.2013CB227900)the College Student’s Program for Innovation of China University of Mining and Technology of China(No.201507)
文摘A mechanical model to control the top-coal deformation is established in accordance with the structural characters of the gob-side entry surrounding rock for the fully-mechanic top-coal caving; the analytical solution of top coal roof-sag curve is deduced with Winkler elastic foundation beam model. By means of a calculating and analytic program, the top coal roof-sag values are calculated under the conditions of different supporting intensities, widths of narrow pillars and stiffness of top coal; meanwhile, the relationship between the roof-sag values and supporting intensity, width of narrow pillars and stiffness of top coal is analyzed as well. With the actual situation of the gob-side entry taken into consideration, the parameters of top-coal control are determined and a supporting plan is proposed for the top-coal control,which is proved to be reliable and effective by on-site verification. Some theoretical guidance and advice are put forward for the top-coal deformation control in gob-side entry for fully mechanized top-coal caving face.