Changes in the sizes of precipitation events in the context of global climate change may have profound impacts on ecosystem productivity in arid and semiarid grasslands. However, we still have little knowledge about t...Changes in the sizes of precipitation events in the context of global climate change may have profound impacts on ecosystem productivity in arid and semiarid grasslands. However, we still have little knowledge about to what extent grassland productivity will respond to an individual precipitation event. In this study, we quantified the duration, the maximum, and the time-integrated amount of the response of daily gross primary productivity (GPP) to an individual precipitation event and their variations with different sizes of precipitation events in a typical temperate steppe in Inner Mongolia, China. Results showed that the duration of GPP-response (τ<sub>R</sub>) and the maximum absolute GPP-response (GPP<sub>max</sub>) increased linearly with the sizes of precipitation events (P<sub>es</sub>), driving a corresponding increase in time-integrated amount of the GPP-response (GPP<sub>total</sub>) because variations of GPPtotal were largely explained by τ<sub>R</sub> and GPP<sub>max</sub>. The relative contributions of these two parameters to GPP<sub>total</sub> were strongly P<sub>es</sub>-dependent. The GPP<sub>max</sub> contributed more to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively small (<20 mm), whereas τ<sub>R</sub> was the main driver to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively large. In addition, a threshold size of at least 5 mm of precipitation was required to induce a GPP-response for the temperate steppe in this study. Our work has important implications for the modeling community to obtain an advanced understanding of productivity-response of grassland ecosystems to altered precipitation regimes.展开更多
We estimated aboveground biomass carbon (TABC) and net carbon accumulation rates (TNEP) for trees in four major forest types based on national forest inventory data collected in 1994-1998 and 1999-2003. The four types...We estimated aboveground biomass carbon (TABC) and net carbon accumulation rates (TNEP) for trees in four major forest types based on national forest inventory data collected in 1994-1998 and 1999-2003. The four types were Pinus massoniana forest, Cunninghamia lanceolata forest, hard broad-leaved evergreen forest and soft broad-leaved evergreen forest. We analyzed variations in TABC and TNEP for five stand ages (initiation, young, medium, mature and old). In both time periods, estimated TABC in all four forest types increased consistently with forest stand age and the oldest stage had the largest TABC compared with other stages. Broad-leaved forests (hard and soft) had higher TABC than needle-leaved forests (Pinus massoniana and Cunninghamia lanceolata) for each of the five age stages. The difference of TABC between broad-leaved and needle-leaved forests increased with forest stand age. Comparison of estimated TNEP by age category indicated TNEP increased from the initiation stage to the young stage, and then decreased from the mature stage to old stage in all four forest types. TNEP for any particular stage depended on the forest type; for instance, broad-leaved forests at both the mature and old stages had greater TNEP than in needle-leaved forests. A logistic curve was applied to fit the relationship between TABC and forest stand age. In each period, correlations in all four forest types were all statistically significant (P < 0.01) with R2 > 0.95. TABC was therefore predicted by these regression functions from 2000 to 2050 and the mean TNEP during the predicted period was estimated to be about 41.14, 31.53, 75.50 and 75.68 gCm-2a-1 in Pinus massoniana forest, Cunninghamia lanceolata forest, hard broad-leaved forest and soft broad-leaved forest, respectively. Results from both forest inventory and regression prediction suggest broad-leaved forests are greater carbon sinks, and hence have greater carbon sequestration ability especially in the mature and old stages when compared to needle-leaved forests. Broad-leaved forests should have high levels of carbon sequestration when compared with needle-leaved forests in south China.展开更多
Soil organic carbon (SOC) stocks in terrestrial ecosystems vary considerably with land use types. Grassland, forest, and cropland coexist in the agro-pastoral ecotone of Inner Mongolia, China. Using SOC data compile...Soil organic carbon (SOC) stocks in terrestrial ecosystems vary considerably with land use types. Grassland, forest, and cropland coexist in the agro-pastoral ecotone of Inner Mongolia, China. Using SOC data compiled from literature and field investigations, this study compared SOC stocks and their vertical distributions among three types of ecosystems. The results indicate that grassland had the Largest SOC stock, which was 1.5- and 1.8-folds more than stocks in forest and cropland, respectively. Relative to the stock in 0-100 cm depth, grassland held more than 40% of its SOC stock in the upper 20 cm soil layer; forest and cropland both held over 30% of their respective SOC stocks in the upper 20 cm soil layer. SOC stocks in grazed grasslands were remarkably promoted after -〉20 years of grazing ex- clusion. Conservational cultivation substantially increased the SOC stocks in cropland, espe- cially in the 0-40 cm depth. Stand ages, tree species, and forest types did not have obvious impacts on forest SOC stocks in the study area likely due to the younger stand ages. Our study implies that soil carbon loss should be taken into account during the implementation of ecological projects, such as reclamation and afforestation, in the arid and semi-arid regions of China.展开更多
Few studies are conducted to quantify the effects of enhanced N deposition on soil nitrous oxide (N2O) emission and methane (CH4) uptake in the meadow steppe of Inner Mongolia, China. A two-year field experiment w...Few studies are conducted to quantify the effects of enhanced N deposition on soil nitrous oxide (N2O) emission and methane (CH4) uptake in the meadow steppe of Inner Mongolia, China. A two-year field experiment was conducted to assess the effects of nitrogen (N) deposition rates (0, 10, and 20 kg N ha-1 year-1 as (NH4)2SO4) on soil N2O and CH4 fluxes. The seasonal and diurnal variations of soil N2O and CH4 fluxes were determined using the static chamber-gas chromatography method during the two growing seasons of 2008 and 2009. Soil temperature, moisture and mineral N (NH4+-N and NO3-N) concentration were simultaneously measured. Results showed that low level of (NH4)2SO4 (10 kg N ha-1 year-1) did not significantly affect soil CH4 and N20 fluxes and other variables. High level of (NH4)2SO4 (20 kg N ha-1 year-1) significantly increased soil NO3-N concentration by 24.1% to 35.6%, decreased soil CH4 uptake by an average of 20.1%, and significantly promoted soil N2O emission by an average of 98.2%. Soil N2O emission responded more strongly to the added N compared to CH4 uptake. However, soil CH4 fluxes were mainly driven by soil moisture, followed by soil NO3--N concentration. Soil N2O fluxes were mainly driven by soil temperature, followed by soil moisture. Soil inorganic N availability was a key integrator of soil CH4 uptake and N2O emission. These results suggest that the changes of availability of inorganic N induced by the increased N deposition in soil may affect the CH4 and N2O fluxes in the cold semi-arid meadow steppe over the short term.展开更多
Shifting sands are one of the main contributors to desertification in China. This paper briefly reviews the measures and techniques which are used to protect traffic lines by stabilizing and fixing sands in the desert...Shifting sands are one of the main contributors to desertification in China. This paper briefly reviews the measures and techniques which are used to protect traffic lines by stabilizing and fixing sands in the desert and desertification-affected arid and semi-arid areas in north China. We introduce the types and features of these measures and techniques, including mechanical, chemical, and biological measures, and outline how they have been applied in different areas and in different traffic lines over the past six decades, from 1950 s to 2010 s, taking the Baotou-Lanzhou railway, the Qinghai-Tibet railway, and the Tarim Desert highway as examples Mechanical measures such as erecting sand-retaining wind walls and placing straw checkerboards have proved to be very efficient for stabilizing shifting sands and protecting traffic lines that pass through the desert areas. Chemical measures are not widely used in the current sand fixing systems because of their high cost and potential pollution risks. Biological measures are preferred because they exhibit much better sand fixation performance and longer duration than the former two types of measures despite their relatively high cost. A combination of different measures is usually adopted in some areas to attain better sand-fixing effects. Stabilizing sand dune surfaces with mechanical measures or irrigation from underground water or river if available helps early recruitment of some drought-tolerant plants(xerophytes). We also point out the restrictions for existing sand-fixing measures and techniques and future research orientation. This review has implications for addressing eco-environmental issues associated with infrastructure construction that is part of the Belt and Road Initiative in desert and desertification-affected arid and semi-arid areas in the Mongolian Plateau.展开更多
An ecosystem communities with is one or many a variety of biotic (living organisms including plants, animals and microbes) and abiotic (things like air, water and mineral soil) components that function in an inter...An ecosystem communities with is one or many a variety of biotic (living organisms including plants, animals and microbes) and abiotic (things like air, water and mineral soil) components that function in an interrelated fashion (Chapin et al. 2012). These biotic and abiotic components linked together through nutrient cycles and energy flows (Chapin et al. 2012). Ecosystems provide humanity with a wide range of services, which are vital to sustaining human health and well-being, and social and economic development (MEA 2005). These services are categorized into provisioning, regulating,展开更多
Dynamic changes in solar radiation have an important influence on ecosystem carbon sequestration,but the effects of changes caused by sky conditions on net ecosystem CO2 exchange(NEE)are unclear.This study analyzed th...Dynamic changes in solar radiation have an important influence on ecosystem carbon sequestration,but the effects of changes caused by sky conditions on net ecosystem CO2 exchange(NEE)are unclear.This study analyzed the effects of sunny,cloudy,and overcast sky conditions on NEE using carbon flux and meteorological data for a subtropical coniferous plantation in 2012.Based on one-year data,we found no seasonal variation in the light response curve under various sky conditions.Compared with sunny sky conditions,the apparent quantum yield(α)and potential photosynthetic rate at a light intensity of 150 and 750 W m^-2(P150 and P750)under cloudy sky conditions increased by an average of 82.3%,217.7%,and 22.5%;αand P150 under overcast sky conditions increased by 118.5%and 301%on average.Moderate radiation conditions were more favorable for maximum NEE,while low radiation conditions inhibited NEE.In most cases,when the sunny NEE was used as a baseline for comparison,the relative change in NEE(%NEE)was positive under cloudy sky conditions and negative under overcast sky conditions.The average maximal%NEE under cloudy sky conditions was 42.4% in spring,34.1% in summer,1.6% in autumn and –87.3% in winter.This study indicates that cloudy sky conditions promote photosynthetic rates and NEE in subtropical coniferous plantations.展开更多
基金jointly supported by the National Natural Science Foundation of China(31400425,31570437,41301043,31420103917)the National Key Project of Scientific and Technical Supporting Program(2013BAC03B03)+1 种基金the Funding for Talented Young Scientists of IGSNRR(2013RC203)the Social Foundation of Beijing Academy of Social Sciences(154005)
文摘Changes in the sizes of precipitation events in the context of global climate change may have profound impacts on ecosystem productivity in arid and semiarid grasslands. However, we still have little knowledge about to what extent grassland productivity will respond to an individual precipitation event. In this study, we quantified the duration, the maximum, and the time-integrated amount of the response of daily gross primary productivity (GPP) to an individual precipitation event and their variations with different sizes of precipitation events in a typical temperate steppe in Inner Mongolia, China. Results showed that the duration of GPP-response (τ<sub>R</sub>) and the maximum absolute GPP-response (GPP<sub>max</sub>) increased linearly with the sizes of precipitation events (P<sub>es</sub>), driving a corresponding increase in time-integrated amount of the GPP-response (GPP<sub>total</sub>) because variations of GPPtotal were largely explained by τ<sub>R</sub> and GPP<sub>max</sub>. The relative contributions of these two parameters to GPP<sub>total</sub> were strongly P<sub>es</sub>-dependent. The GPP<sub>max</sub> contributed more to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively small (<20 mm), whereas τ<sub>R</sub> was the main driver to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively large. In addition, a threshold size of at least 5 mm of precipitation was required to induce a GPP-response for the temperate steppe in this study. Our work has important implications for the modeling community to obtain an advanced understanding of productivity-response of grassland ecosystems to altered precipitation regimes.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA05050205)
文摘We estimated aboveground biomass carbon (TABC) and net carbon accumulation rates (TNEP) for trees in four major forest types based on national forest inventory data collected in 1994-1998 and 1999-2003. The four types were Pinus massoniana forest, Cunninghamia lanceolata forest, hard broad-leaved evergreen forest and soft broad-leaved evergreen forest. We analyzed variations in TABC and TNEP for five stand ages (initiation, young, medium, mature and old). In both time periods, estimated TABC in all four forest types increased consistently with forest stand age and the oldest stage had the largest TABC compared with other stages. Broad-leaved forests (hard and soft) had higher TABC than needle-leaved forests (Pinus massoniana and Cunninghamia lanceolata) for each of the five age stages. The difference of TABC between broad-leaved and needle-leaved forests increased with forest stand age. Comparison of estimated TNEP by age category indicated TNEP increased from the initiation stage to the young stage, and then decreased from the mature stage to old stage in all four forest types. TNEP for any particular stage depended on the forest type; for instance, broad-leaved forests at both the mature and old stages had greater TNEP than in needle-leaved forests. A logistic curve was applied to fit the relationship between TABC and forest stand age. In each period, correlations in all four forest types were all statistically significant (P < 0.01) with R2 > 0.95. TABC was therefore predicted by these regression functions from 2000 to 2050 and the mean TNEP during the predicted period was estimated to be about 41.14, 31.53, 75.50 and 75.68 gCm-2a-1 in Pinus massoniana forest, Cunninghamia lanceolata forest, hard broad-leaved forest and soft broad-leaved forest, respectively. Results from both forest inventory and regression prediction suggest broad-leaved forests are greater carbon sinks, and hence have greater carbon sequestration ability especially in the mature and old stages when compared to needle-leaved forests. Broad-leaved forests should have high levels of carbon sequestration when compared with needle-leaved forests in south China.
基金The Strategic Priority Research Program of CAS,No.XDA 05050201The Funding for Talented Young Scientists of IGSNRR,No.2013 RC203Youth Innovation Promotion Association of CAS,No.2015037
文摘Soil organic carbon (SOC) stocks in terrestrial ecosystems vary considerably with land use types. Grassland, forest, and cropland coexist in the agro-pastoral ecotone of Inner Mongolia, China. Using SOC data compiled from literature and field investigations, this study compared SOC stocks and their vertical distributions among three types of ecosystems. The results indicate that grassland had the Largest SOC stock, which was 1.5- and 1.8-folds more than stocks in forest and cropland, respectively. Relative to the stock in 0-100 cm depth, grassland held more than 40% of its SOC stock in the upper 20 cm soil layer; forest and cropland both held over 30% of their respective SOC stocks in the upper 20 cm soil layer. SOC stocks in grazed grasslands were remarkably promoted after -〉20 years of grazing ex- clusion. Conservational cultivation substantially increased the SOC stocks in cropland, espe- cially in the 0-40 cm depth. Stand ages, tree species, and forest types did not have obvious impacts on forest SOC stocks in the study area likely due to the younger stand ages. Our study implies that soil carbon loss should be taken into account during the implementation of ecological projects, such as reclamation and afforestation, in the arid and semi-arid regions of China.
基金supported by the National Natural Science Foundation of China (No. 31300375)the National Non-Profit Institute Research Grant of the Chinese Academy of Agricultural Sciences (No. BSRF201505)the Key Project of the National Scientific and Technical Support Program, China (No. 2013BAC03B03)
文摘Few studies are conducted to quantify the effects of enhanced N deposition on soil nitrous oxide (N2O) emission and methane (CH4) uptake in the meadow steppe of Inner Mongolia, China. A two-year field experiment was conducted to assess the effects of nitrogen (N) deposition rates (0, 10, and 20 kg N ha-1 year-1 as (NH4)2SO4) on soil N2O and CH4 fluxes. The seasonal and diurnal variations of soil N2O and CH4 fluxes were determined using the static chamber-gas chromatography method during the two growing seasons of 2008 and 2009. Soil temperature, moisture and mineral N (NH4+-N and NO3-N) concentration were simultaneously measured. Results showed that low level of (NH4)2SO4 (10 kg N ha-1 year-1) did not significantly affect soil CH4 and N20 fluxes and other variables. High level of (NH4)2SO4 (20 kg N ha-1 year-1) significantly increased soil NO3-N concentration by 24.1% to 35.6%, decreased soil CH4 uptake by an average of 20.1%, and significantly promoted soil N2O emission by an average of 98.2%. Soil N2O emission responded more strongly to the added N compared to CH4 uptake. However, soil CH4 fluxes were mainly driven by soil moisture, followed by soil NO3--N concentration. Soil N2O fluxes were mainly driven by soil temperature, followed by soil moisture. Soil inorganic N availability was a key integrator of soil CH4 uptake and N2O emission. These results suggest that the changes of availability of inorganic N induced by the increased N deposition in soil may affect the CH4 and N2O fluxes in the cold semi-arid meadow steppe over the short term.
基金The Strategic Priority Research Program of Chinese Academy of Sciences (Pan-TPE, XDA2003020202)The National Natural Science Foundation of China (31961143022)。
文摘Shifting sands are one of the main contributors to desertification in China. This paper briefly reviews the measures and techniques which are used to protect traffic lines by stabilizing and fixing sands in the desert and desertification-affected arid and semi-arid areas in north China. We introduce the types and features of these measures and techniques, including mechanical, chemical, and biological measures, and outline how they have been applied in different areas and in different traffic lines over the past six decades, from 1950 s to 2010 s, taking the Baotou-Lanzhou railway, the Qinghai-Tibet railway, and the Tarim Desert highway as examples Mechanical measures such as erecting sand-retaining wind walls and placing straw checkerboards have proved to be very efficient for stabilizing shifting sands and protecting traffic lines that pass through the desert areas. Chemical measures are not widely used in the current sand fixing systems because of their high cost and potential pollution risks. Biological measures are preferred because they exhibit much better sand fixation performance and longer duration than the former two types of measures despite their relatively high cost. A combination of different measures is usually adopted in some areas to attain better sand-fixing effects. Stabilizing sand dune surfaces with mechanical measures or irrigation from underground water or river if available helps early recruitment of some drought-tolerant plants(xerophytes). We also point out the restrictions for existing sand-fixing measures and techniques and future research orientation. This review has implications for addressing eco-environmental issues associated with infrastructure construction that is part of the Belt and Road Initiative in desert and desertification-affected arid and semi-arid areas in the Mongolian Plateau.
文摘An ecosystem communities with is one or many a variety of biotic (living organisms including plants, animals and microbes) and abiotic (things like air, water and mineral soil) components that function in an interrelated fashion (Chapin et al. 2012). These biotic and abiotic components linked together through nutrient cycles and energy flows (Chapin et al. 2012). Ecosystems provide humanity with a wide range of services, which are vital to sustaining human health and well-being, and social and economic development (MEA 2005). These services are categorized into provisioning, regulating,
基金National Key Research and Development Program of China(2017YFC0503801 2016YFA0600104)
文摘Dynamic changes in solar radiation have an important influence on ecosystem carbon sequestration,but the effects of changes caused by sky conditions on net ecosystem CO2 exchange(NEE)are unclear.This study analyzed the effects of sunny,cloudy,and overcast sky conditions on NEE using carbon flux and meteorological data for a subtropical coniferous plantation in 2012.Based on one-year data,we found no seasonal variation in the light response curve under various sky conditions.Compared with sunny sky conditions,the apparent quantum yield(α)and potential photosynthetic rate at a light intensity of 150 and 750 W m^-2(P150 and P750)under cloudy sky conditions increased by an average of 82.3%,217.7%,and 22.5%;αand P150 under overcast sky conditions increased by 118.5%and 301%on average.Moderate radiation conditions were more favorable for maximum NEE,while low radiation conditions inhibited NEE.In most cases,when the sunny NEE was used as a baseline for comparison,the relative change in NEE(%NEE)was positive under cloudy sky conditions and negative under overcast sky conditions.The average maximal%NEE under cloudy sky conditions was 42.4% in spring,34.1% in summer,1.6% in autumn and –87.3% in winter.This study indicates that cloudy sky conditions promote photosynthetic rates and NEE in subtropical coniferous plantations.