DNS over HTTPS(DoH)协议是一种针对域名系统(DNS)的最新改进方案,然而用户可使用第三方DoH服务规避内网原有的监管,所以异常流量检测方法不再适用于检测DoH流量。针对该问题提出了一种DTESI算法。首先,基于信息熵将DoH流量作为异常流...DNS over HTTPS(DoH)协议是一种针对域名系统(DNS)的最新改进方案,然而用户可使用第三方DoH服务规避内网原有的监管,所以异常流量检测方法不再适用于检测DoH流量。针对该问题提出了一种DTESI算法。首先,基于信息熵将DoH流量作为异常流量从全部网络流量中筛选出来;然后,利用DoH服务器与同一客户端建立TLS连接时响应方式总是相同的特性,用指纹识别检测客户端与DoH服务器之间的TLS协商,确定DoH服务器身份;最后,使用Top-K抽样算法选出一定时段内网络中前K台活跃主机着重进行流量检测,使算法能应用于中大型组织的网络。实验结果表明,针对发现的异常流量,DTESI算法检测出的DoH服务提供商准确率超过94%。在此基础上比较了在不同K值下的算法检测时间和对网络中全部DoH流量的检测覆盖率,结果表明合理选择K值可以提升算法的整体效能。展开更多
随着云计算技术的普及,云服务数量指数级增长,用户不再满足于功能性需求,服务质量(Quality of Service,QoS)成为比较服务优劣的关键性能指标.如何在动态、复杂的云环境中实时、准确地预测服务质量并为用户推荐高质量服务成为热点问题....随着云计算技术的普及,云服务数量指数级增长,用户不再满足于功能性需求,服务质量(Quality of Service,QoS)成为比较服务优劣的关键性能指标.如何在动态、复杂的云环境中实时、准确地预测服务质量并为用户推荐高质量服务成为热点问题.考虑到云服务器的负载、网络状态、用户接入云环境的偏好等随着时间变化,本文提出了基于多源特征和多任务学习的时序QoS预测方法(T-MST),它可以实时、准确地同时预测多种QoS属性.首先,TMST对用户、服务进行特征表示,通过Time2Vec刻画时序特征,再结合多种QoS属性的历史记录生成多源特征表示.其次,基于滑动窗口采用LSTM感知窗口内的时序关系,借助注意力机制细化窗口内不同时刻的关键性,从而构造待预测时刻的隐藏状态.最后,T-MST采用多任务预测层实现多种QoS属性的同时预测,它们共享上游模型,仅在预测层采用不同的感知模块以提升模型的鲁棒性和计算效率.本文基于真实世界的数据集进行了全面的实验验证,结果表明T-MST在吞吐量和响应时间的时序预测任务上平均绝对误差(Mean Absolute Error,MAE)分别平均提升了37.53%和20.38%,优于现有的时序QoS预测方法;而且TMST的计算效率更高,能够有效应对实时QoS预测的需求.展开更多
文摘DNS over HTTPS(DoH)协议是一种针对域名系统(DNS)的最新改进方案,然而用户可使用第三方DoH服务规避内网原有的监管,所以异常流量检测方法不再适用于检测DoH流量。针对该问题提出了一种DTESI算法。首先,基于信息熵将DoH流量作为异常流量从全部网络流量中筛选出来;然后,利用DoH服务器与同一客户端建立TLS连接时响应方式总是相同的特性,用指纹识别检测客户端与DoH服务器之间的TLS协商,确定DoH服务器身份;最后,使用Top-K抽样算法选出一定时段内网络中前K台活跃主机着重进行流量检测,使算法能应用于中大型组织的网络。实验结果表明,针对发现的异常流量,DTESI算法检测出的DoH服务提供商准确率超过94%。在此基础上比较了在不同K值下的算法检测时间和对网络中全部DoH流量的检测覆盖率,结果表明合理选择K值可以提升算法的整体效能。
文摘随着云计算技术的普及,云服务数量指数级增长,用户不再满足于功能性需求,服务质量(Quality of Service,QoS)成为比较服务优劣的关键性能指标.如何在动态、复杂的云环境中实时、准确地预测服务质量并为用户推荐高质量服务成为热点问题.考虑到云服务器的负载、网络状态、用户接入云环境的偏好等随着时间变化,本文提出了基于多源特征和多任务学习的时序QoS预测方法(T-MST),它可以实时、准确地同时预测多种QoS属性.首先,TMST对用户、服务进行特征表示,通过Time2Vec刻画时序特征,再结合多种QoS属性的历史记录生成多源特征表示.其次,基于滑动窗口采用LSTM感知窗口内的时序关系,借助注意力机制细化窗口内不同时刻的关键性,从而构造待预测时刻的隐藏状态.最后,T-MST采用多任务预测层实现多种QoS属性的同时预测,它们共享上游模型,仅在预测层采用不同的感知模块以提升模型的鲁棒性和计算效率.本文基于真实世界的数据集进行了全面的实验验证,结果表明T-MST在吞吐量和响应时间的时序预测任务上平均绝对误差(Mean Absolute Error,MAE)分别平均提升了37.53%和20.38%,优于现有的时序QoS预测方法;而且TMST的计算效率更高,能够有效应对实时QoS预测的需求.