目的研究中药复方桃红四物汤(Tao Hong Si Wu decoction,THSWD)治疗大脑中动脉闭塞(middle cerebral artery occlusion,MCAO)大鼠长链非编码RNA(long non-coding RNA,lncRNA)的表达,并确定THSWD治疗MCAO大鼠可能的分子机制。方法从对照...目的研究中药复方桃红四物汤(Tao Hong Si Wu decoction,THSWD)治疗大脑中动脉闭塞(middle cerebral artery occlusion,MCAO)大鼠长链非编码RNA(long non-coding RNA,lncRNA)的表达,并确定THSWD治疗MCAO大鼠可能的分子机制。方法从对照组、MCAO组和MCAO+THSWD组各获得3个大脑半球组织。采用RNA测序技术鉴定三组中的lncRNA基因表达。鉴定了THSWD调节的lncRNA基因,然后构建了THSWD调节的lncRNA-mRNA网络。通过MCODE插件鉴定lncRNA-mRNA网络的模块。基因本体(gene ontology,GO)和京都基因与基因组百科全书数据库(kyoto encyclopedia of genes and genomes,KEGG)用于分析富集的生物功能和信号通路。鉴定了THSWD调节的lncRNA的顺式和反式调控基因。采用逆转录实时定量聚合酶链式反应(RT-qPCR)验证lncRNA。分子对接用于验证lncRNA-mRNA网络靶点和通路相关蛋白结合能力。结果在MCAO大鼠中,THSWD共调节了302个lncRNA。生物信息学分析表明,一些核心lncRNA可能在THSWD治疗MCAO大鼠中发挥重要作用,此外,我们进一步发现THSWD可能也通过lncRNA-mRNA网络以及网络富集的补体和凝血级联反应等多通路治疗MCAO大鼠。分子对接结果表明,THSWD活性化合物没食子酸和苦杏仁苷与蛋白质靶点具有一定的结合能力。结论THSWD可以通过调节lncRNA保护MCAO大鼠脑损伤,为THSWD治疗缺血性中风提供了新见解。展开更多
Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to util...Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.展开更多
文摘目的研究中药复方桃红四物汤(Tao Hong Si Wu decoction,THSWD)治疗大脑中动脉闭塞(middle cerebral artery occlusion,MCAO)大鼠长链非编码RNA(long non-coding RNA,lncRNA)的表达,并确定THSWD治疗MCAO大鼠可能的分子机制。方法从对照组、MCAO组和MCAO+THSWD组各获得3个大脑半球组织。采用RNA测序技术鉴定三组中的lncRNA基因表达。鉴定了THSWD调节的lncRNA基因,然后构建了THSWD调节的lncRNA-mRNA网络。通过MCODE插件鉴定lncRNA-mRNA网络的模块。基因本体(gene ontology,GO)和京都基因与基因组百科全书数据库(kyoto encyclopedia of genes and genomes,KEGG)用于分析富集的生物功能和信号通路。鉴定了THSWD调节的lncRNA的顺式和反式调控基因。采用逆转录实时定量聚合酶链式反应(RT-qPCR)验证lncRNA。分子对接用于验证lncRNA-mRNA网络靶点和通路相关蛋白结合能力。结果在MCAO大鼠中,THSWD共调节了302个lncRNA。生物信息学分析表明,一些核心lncRNA可能在THSWD治疗MCAO大鼠中发挥重要作用,此外,我们进一步发现THSWD可能也通过lncRNA-mRNA网络以及网络富集的补体和凝血级联反应等多通路治疗MCAO大鼠。分子对接结果表明,THSWD活性化合物没食子酸和苦杏仁苷与蛋白质靶点具有一定的结合能力。结论THSWD可以通过调节lncRNA保护MCAO大鼠脑损伤,为THSWD治疗缺血性中风提供了新见解。
基金supported by the National Natural Science Foundation of China(Grant Nos.52171289,42176210,and 52201330)the Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2022B1515250005)Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311023014).
文摘Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.