Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented...Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented. In this study, we examined the impact of four planting and mulching patterns(including control, flat planting without mulching; M1, flat planting with film mulching; M2, ridge-furrow planting with film mulching on both ridges and furrows; and M3, ridge-furrow planting with film mulching on continuous ridges) on the seed yield of winter oilseed rape, soil moisture, soil temperature, soil organic carbon(SOC) content, soil nutrient content, and soil enzymatic activity over three growing seasons from 2012 to 2015 in a winter oilseed rape field in the semi-arid area of Northwest China. Seed yield of winter oilseed rape, soil moisture, soil temperature, enzymatic activities, and contents of nitrate-nitrogen, available phosphorus, and available potassium were all significantly higher in mulching treatments(M1, M2 and M3) than in control treatment over the three growing seasons, whereas SOC content was significantly lower in mulching treatments than in control treatment during 2013–2014 and 2014–2015. Among the three mulching treatments(M1, M2 and M3), the M3 treatment showed consistently higher seed yield, SOC content, nutrient contents, and enzymatic activities than the other two treatments. Seed yield of winter oilseed rape was 41.1% and 15.0% higher in M3 than in M1 and M2, respectively. SOC content and soil enzymatic activities in the top 0–20 cm soil layers and nitrate-nitrogen content in the top 0–30 cm soil layers were all significantly higher in M3 than in M1 and M2. Therefore, we advise the ridge-furrow planting with film mulching on continuous ridges(i.e., M3) as an efficient planting and mulching pattern for sustainably improving the seed yield of winter oilseed rape and preserving soil fertility in the semi-arid area of Northwest China.展开更多
Limited water resources often result in reduced crop yield and low water productivity(WP). In northwestern China, crop production is generally dependent on precipitation. Therefore, a variety of agricultural rainwat...Limited water resources often result in reduced crop yield and low water productivity(WP). In northwestern China, crop production is generally dependent on precipitation. Therefore, a variety of agricultural rainwater harvesting(ARH) techniques have been used for conserving soil moisture, ameliorating soil environment, increasing crop yield, and improving water use efficiency. A two-year(2013–2015) field experiment was conducted under a typical sub-humid drought-prone climate in Yangling(108°24′E, 34°20′N; 521 m a.s.l.), Shaanxi Province, China, to explore the effects of mulching(same for summer maize and winter wheat) on soil moisture, soil temperature, crop water consumption, and crop yield with a winter wheat/summer maize rotation. Crops were planted in a ridge-furrow pattern and the treatments consisted of a transparent film mulch over the ridges(M1), a crop straw mulch in the furrows(M2), a transparent film mulch over the ridges and a crop straw mulch in the furrows(M3), a black film mulch over the ridges and a crop straw mulch in the furrows(M4), and a control with no mulch(CK). Results showed that M4 was the best treatment for improving soil water storage and content, and decreasing crop water consumption during the summer maize and winter wheat rotation. In both maize and wheat seasons, M1 had a higher soil temperature than M2 and CK, and M3 had a higher soil temperature than M4. In the maize seasons, M4 had the highest yield, WP, and precipitation productivity(PP), with the average values for these parameters increasing by 30.9%, 39.0%, and 31.0%, respectively, compared to those in CK. In the wheat seasons, however, M3 had the highest yield, WP, and PP, with the average values for these parameters being 23.7%, 26.7%, and 23.8% higher, respectively, than those in CK. Annual yield(maize and wheat yields combined) and WP did not differ significantly between M3 and M4. These results suggested that M3 and M4 may thus be the optimal ARH practices for the production of winter wheat and summer maize, respectively, in arid and semi-arid areas.展开更多
Ridge-furrow film mulching has been proven to be an effective water-saving and yield-improving planting pattern in arid and semi-arid regions.Drought is the main factor limiting the local agricultural production in th...Ridge-furrow film mulching has been proven to be an effective water-saving and yield-improving planting pattern in arid and semi-arid regions.Drought is the main factor limiting the local agricultural production in the Loess Plateau of China.In this study,we tried to select a suitable ridge-furrow mulching system to improve this situation.A two-year field experiment of summer maize(Zea mays L.)during the growing seasons of 2017 and 2018 was conducted to systematically analyze the effects of flat planting with no film mulching(CK),ridge-furrow with ridges mulching and furrows bare(RFM),and double ridges and furrows full mulching(DRFFM)on soil temperature,soil water storage(SWS),root growth,aboveground dry matter,water use efficiency(WUE),and grain yield.Both RFM and DRFFM significantly increased soil temperature in ridges,while soil temperature in furrows for RFM and DRFFM was similar to that for CK.The largest SWS was observed in DRFFM,followed by RFM and CK,with significant differences among them.SWS was lower in ridges than in furrows for RFM.DRFFM treatment kept soil water in ridges,resulting in higher SWS in ridges than in furrows after a period of no water input.Across the two growing seasons,compared with CK,RFM increased root mass by 10.2%and 19.3%at the jointing and filling stages,respectively,and DRFFM increased root mass by 7.9%at the jointing stage but decreased root mass by 6.0%at the filling stage.Over the two growing seasons,root length at the jointing and filling stages was respectively increased by 75.4%and 58.7%in DRFFM,and 20.6%and 30.2%in RFM.Relative to the jointing stage,the increased proportions of root mass and length at the filling stage were respectively 42.8%and 94.9%in DRFFM,63.2%and 115.1%in CK,and 76.7%and 132.1%in RFM,over the two growing seasons,showing that DRFFM slowed down root growth while RFM promoted root growth at the later growth stages.DRFFM treatment increased root mass and root length in ridges and decreased them in 0-30 cm soil layer,while RFM increased them in 0-30 cm soil layer.Compared with CK,DRFFM decreased aboveground dry matter while RFM increased it.Evapotranspiration was reduced by 9.8%and 7.1%in DRFFM and RFM,respectively,across the two growing seasons.Grain yield was decreased by 14.3%in DRFFM and increased by 13.6%in RFM compared with CK over the two growing seasons.WUE in CK was non-significantly 6.8%higher than that in DRFFM and significantly 22.5%lower than that in RFM across the two growing seasons.Thus,RFM planting pattern is recommended as a viable water-saving option for summer maize in the Loess Plateau of China.展开更多
基金supported by the Special Fund for Agro-scientific Research in the Public Interest,China (201503125,201503105)the National High Technology Research and Development Program of China (2011AA100504)
文摘Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented. In this study, we examined the impact of four planting and mulching patterns(including control, flat planting without mulching; M1, flat planting with film mulching; M2, ridge-furrow planting with film mulching on both ridges and furrows; and M3, ridge-furrow planting with film mulching on continuous ridges) on the seed yield of winter oilseed rape, soil moisture, soil temperature, soil organic carbon(SOC) content, soil nutrient content, and soil enzymatic activity over three growing seasons from 2012 to 2015 in a winter oilseed rape field in the semi-arid area of Northwest China. Seed yield of winter oilseed rape, soil moisture, soil temperature, enzymatic activities, and contents of nitrate-nitrogen, available phosphorus, and available potassium were all significantly higher in mulching treatments(M1, M2 and M3) than in control treatment over the three growing seasons, whereas SOC content was significantly lower in mulching treatments than in control treatment during 2013–2014 and 2014–2015. Among the three mulching treatments(M1, M2 and M3), the M3 treatment showed consistently higher seed yield, SOC content, nutrient contents, and enzymatic activities than the other two treatments. Seed yield of winter oilseed rape was 41.1% and 15.0% higher in M3 than in M1 and M2, respectively. SOC content and soil enzymatic activities in the top 0–20 cm soil layers and nitrate-nitrogen content in the top 0–30 cm soil layers were all significantly higher in M3 than in M1 and M2. Therefore, we advise the ridge-furrow planting with film mulching on continuous ridges(i.e., M3) as an efficient planting and mulching pattern for sustainably improving the seed yield of winter oilseed rape and preserving soil fertility in the semi-arid area of Northwest China.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest (201503125, 201503105)the Chinese National High Technology Research and Development Program (2011AA100504)
文摘Limited water resources often result in reduced crop yield and low water productivity(WP). In northwestern China, crop production is generally dependent on precipitation. Therefore, a variety of agricultural rainwater harvesting(ARH) techniques have been used for conserving soil moisture, ameliorating soil environment, increasing crop yield, and improving water use efficiency. A two-year(2013–2015) field experiment was conducted under a typical sub-humid drought-prone climate in Yangling(108°24′E, 34°20′N; 521 m a.s.l.), Shaanxi Province, China, to explore the effects of mulching(same for summer maize and winter wheat) on soil moisture, soil temperature, crop water consumption, and crop yield with a winter wheat/summer maize rotation. Crops were planted in a ridge-furrow pattern and the treatments consisted of a transparent film mulch over the ridges(M1), a crop straw mulch in the furrows(M2), a transparent film mulch over the ridges and a crop straw mulch in the furrows(M3), a black film mulch over the ridges and a crop straw mulch in the furrows(M4), and a control with no mulch(CK). Results showed that M4 was the best treatment for improving soil water storage and content, and decreasing crop water consumption during the summer maize and winter wheat rotation. In both maize and wheat seasons, M1 had a higher soil temperature than M2 and CK, and M3 had a higher soil temperature than M4. In the maize seasons, M4 had the highest yield, WP, and precipitation productivity(PP), with the average values for these parameters increasing by 30.9%, 39.0%, and 31.0%, respectively, compared to those in CK. In the wheat seasons, however, M3 had the highest yield, WP, and PP, with the average values for these parameters being 23.7%, 26.7%, and 23.8% higher, respectively, than those in CK. Annual yield(maize and wheat yields combined) and WP did not differ significantly between M3 and M4. These results suggested that M3 and M4 may thus be the optimal ARH practices for the production of winter wheat and summer maize, respectively, in arid and semi-arid areas.
基金This study was funded by the National Natural Science Foundation of China(51979235,51909221)the Agricultural Science and Technology Innovation Integration Promotion Project of Shaanxi Province,China(SXNYLSYF2019-01)+1 种基金the China Postdoctoral Science Foundation(2019M650277)the Natural Science Basic Research Plan in Shaanxi Province,China(2020JQ-276).
文摘Ridge-furrow film mulching has been proven to be an effective water-saving and yield-improving planting pattern in arid and semi-arid regions.Drought is the main factor limiting the local agricultural production in the Loess Plateau of China.In this study,we tried to select a suitable ridge-furrow mulching system to improve this situation.A two-year field experiment of summer maize(Zea mays L.)during the growing seasons of 2017 and 2018 was conducted to systematically analyze the effects of flat planting with no film mulching(CK),ridge-furrow with ridges mulching and furrows bare(RFM),and double ridges and furrows full mulching(DRFFM)on soil temperature,soil water storage(SWS),root growth,aboveground dry matter,water use efficiency(WUE),and grain yield.Both RFM and DRFFM significantly increased soil temperature in ridges,while soil temperature in furrows for RFM and DRFFM was similar to that for CK.The largest SWS was observed in DRFFM,followed by RFM and CK,with significant differences among them.SWS was lower in ridges than in furrows for RFM.DRFFM treatment kept soil water in ridges,resulting in higher SWS in ridges than in furrows after a period of no water input.Across the two growing seasons,compared with CK,RFM increased root mass by 10.2%and 19.3%at the jointing and filling stages,respectively,and DRFFM increased root mass by 7.9%at the jointing stage but decreased root mass by 6.0%at the filling stage.Over the two growing seasons,root length at the jointing and filling stages was respectively increased by 75.4%and 58.7%in DRFFM,and 20.6%and 30.2%in RFM.Relative to the jointing stage,the increased proportions of root mass and length at the filling stage were respectively 42.8%and 94.9%in DRFFM,63.2%and 115.1%in CK,and 76.7%and 132.1%in RFM,over the two growing seasons,showing that DRFFM slowed down root growth while RFM promoted root growth at the later growth stages.DRFFM treatment increased root mass and root length in ridges and decreased them in 0-30 cm soil layer,while RFM increased them in 0-30 cm soil layer.Compared with CK,DRFFM decreased aboveground dry matter while RFM increased it.Evapotranspiration was reduced by 9.8%and 7.1%in DRFFM and RFM,respectively,across the two growing seasons.Grain yield was decreased by 14.3%in DRFFM and increased by 13.6%in RFM compared with CK over the two growing seasons.WUE in CK was non-significantly 6.8%higher than that in DRFFM and significantly 22.5%lower than that in RFM across the two growing seasons.Thus,RFM planting pattern is recommended as a viable water-saving option for summer maize in the Loess Plateau of China.