为提升钛酸铋钠(NBT)基无铅陶瓷电容材料的储能性能,以A位掺杂方式向0.65[Na_(0.5)Bi_(0.5)TiO_(3)]-0.35Sr_(0.7)Bi_(0.2)TiO_(3)中引入MgO,并采用固相烧结法制备了不同摩尔含量(x=0.01~0.06)的0.65[(Na1-x,Mgx)0.5Bi_(0.5)TiO_(3)]-0....为提升钛酸铋钠(NBT)基无铅陶瓷电容材料的储能性能,以A位掺杂方式向0.65[Na_(0.5)Bi_(0.5)TiO_(3)]-0.35Sr_(0.7)Bi_(0.2)TiO_(3)中引入MgO,并采用固相烧结法制备了不同摩尔含量(x=0.01~0.06)的0.65[(Na1-x,Mgx)0.5Bi_(0.5)TiO_(3)]-0.35Sr_(0.7)Bi_(0.2)TiO_(3)(NBT-SBT)陶瓷样品。通过SEM观察和XRD表征,发现随着Mg^(2+)含量的增加,NBT-SBT陶瓷的晶粒尺寸呈先减小后增大的变化,在Mg^(2+)掺入量(x)为0.025时,陶瓷晶粒尺寸最小。介电温谱和电滞回线测试表明该陶瓷为典型的铁电弛豫体,具有较高的介电常数(εr)和电极化强度(Pmax)。在100 k V/cm电场下,(Na0.94,Mg0.06)BT-SBT的可释放能量密度Wrec高达1.65 J/cm^(3),储能效率η为75%,综合性能优于同类NBT基陶瓷样品。结果表明,MgO掺杂的(Na1-x,Mgx)BT-SBT陶瓷具有优异的储能密度和效率,可为电子电力设备等领域的高功率储能电容器件的研究提供参考。展开更多
The southern margin of the Gurbantunggut Desert,China,is characterized by alternating layers of aeolian and alluvial deposits.Investigating the characteristics of arenaceous sediment in this area is of significant imp...The southern margin of the Gurbantunggut Desert,China,is characterized by alternating layers of aeolian and alluvial deposits.Investigating the characteristics of arenaceous sediment in this area is of significant importance for understanding the interactive processes of wind and water forces,as well as the provenance of sediment.However,there are relatively few investigations on the characteristics of such sediment at present.In this study,we researched three aeolian-alluvial interactive stratigraphic profiles and different types of surface sediment on the desert-oasis transitional zone of southern margin of the Gurbantunggut Desert.Based on the optically stimulated luminescence(OSL)dating of aeolian sand and analyses of quartz sand grain size and surface micro-texture,we explored the aeolian-alluvial environmental change at southern margin of the desert in Holocene,as well as the provenance of sediment.The results indicated that the grain size characteristics of different types of sediment in the stratigraphic profiles were similar to those of modern dune sand,interdune sand,muddy desert surface soil,and riverbed sand.Their frequency curves were unimodal or bimodal,and cumulative probability curves were two-segment or three-segment,mainly composed of suspension load and saltation load.The quartz sand in the sediment at southern margin of the desert had undergone alternating transformation of various exogenic forces,with short transportation distance and time,and sedimentary environment was relatively humid.In Holocene,southern margin of the desert primarily featured braided river deposits,and during intermittent period of river activity,there were also aeolian deposits such as sand sheet deposits,stabilized dune deposits,and mobile dune deposits.The provenance for Holocene alluvial deposits at southern margin of the desert remains relatively constant,with the debris of the Tianshan Mountains being the primary provenance.Aeolian sand is mainly near-source recharge,which is formed by in situ deposition of fluvial or lacustrine materials in southern margin of the desert transported by wind erosion,and its provenance was still the weathered debris of the Tianshan Mountains.In addition,the sand in interior of the desert may be transported by northwest wind in desert-scale,thus affecting the development of dunes in southern margin of the desert.The results of this study provide a reference for understanding the composition and provenance changes of desert sand in the context of global climate change.展开更多
文摘为提升钛酸铋钠(NBT)基无铅陶瓷电容材料的储能性能,以A位掺杂方式向0.65[Na_(0.5)Bi_(0.5)TiO_(3)]-0.35Sr_(0.7)Bi_(0.2)TiO_(3)中引入MgO,并采用固相烧结法制备了不同摩尔含量(x=0.01~0.06)的0.65[(Na1-x,Mgx)0.5Bi_(0.5)TiO_(3)]-0.35Sr_(0.7)Bi_(0.2)TiO_(3)(NBT-SBT)陶瓷样品。通过SEM观察和XRD表征,发现随着Mg^(2+)含量的增加,NBT-SBT陶瓷的晶粒尺寸呈先减小后增大的变化,在Mg^(2+)掺入量(x)为0.025时,陶瓷晶粒尺寸最小。介电温谱和电滞回线测试表明该陶瓷为典型的铁电弛豫体,具有较高的介电常数(εr)和电极化强度(Pmax)。在100 k V/cm电场下,(Na0.94,Mg0.06)BT-SBT的可释放能量密度Wrec高达1.65 J/cm^(3),储能效率η为75%,综合性能优于同类NBT基陶瓷样品。结果表明,MgO掺杂的(Na1-x,Mgx)BT-SBT陶瓷具有优异的储能密度和效率,可为电子电力设备等领域的高功率储能电容器件的研究提供参考。
基金the National Natural Science Foundation of China(42071011)the 2023 Annual Postgraduate Research and Innovation Foundation of Fujian Normal University,China.
文摘The southern margin of the Gurbantunggut Desert,China,is characterized by alternating layers of aeolian and alluvial deposits.Investigating the characteristics of arenaceous sediment in this area is of significant importance for understanding the interactive processes of wind and water forces,as well as the provenance of sediment.However,there are relatively few investigations on the characteristics of such sediment at present.In this study,we researched three aeolian-alluvial interactive stratigraphic profiles and different types of surface sediment on the desert-oasis transitional zone of southern margin of the Gurbantunggut Desert.Based on the optically stimulated luminescence(OSL)dating of aeolian sand and analyses of quartz sand grain size and surface micro-texture,we explored the aeolian-alluvial environmental change at southern margin of the desert in Holocene,as well as the provenance of sediment.The results indicated that the grain size characteristics of different types of sediment in the stratigraphic profiles were similar to those of modern dune sand,interdune sand,muddy desert surface soil,and riverbed sand.Their frequency curves were unimodal or bimodal,and cumulative probability curves were two-segment or three-segment,mainly composed of suspension load and saltation load.The quartz sand in the sediment at southern margin of the desert had undergone alternating transformation of various exogenic forces,with short transportation distance and time,and sedimentary environment was relatively humid.In Holocene,southern margin of the desert primarily featured braided river deposits,and during intermittent period of river activity,there were also aeolian deposits such as sand sheet deposits,stabilized dune deposits,and mobile dune deposits.The provenance for Holocene alluvial deposits at southern margin of the desert remains relatively constant,with the debris of the Tianshan Mountains being the primary provenance.Aeolian sand is mainly near-source recharge,which is formed by in situ deposition of fluvial or lacustrine materials in southern margin of the desert transported by wind erosion,and its provenance was still the weathered debris of the Tianshan Mountains.In addition,the sand in interior of the desert may be transported by northwest wind in desert-scale,thus affecting the development of dunes in southern margin of the desert.The results of this study provide a reference for understanding the composition and provenance changes of desert sand in the context of global climate change.