The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied....The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.Targeting this problem,the process state model of a mixed-flow production line is analyzed.On this basis,a mathematical model of a mixed-flow job-shop scheduling problem with combined processing constraints is established based on the traditional FJSP.Then,an improved genetic algorithm with multi-segment encoding,crossover,and mutation is proposed for the mixed-flow production line problem.Finally,the proposed algorithm is applied to the production workshop of missile structural components at an aerospace institute to verify its feasibility and effectiveness.展开更多
As the manufacturing mode focuses more on network and community,the orders and production processes are becoming highly dynamic and unpredictable.The traditional manufacturing system cannot handle those exceptional ev...As the manufacturing mode focuses more on network and community,the orders and production processes are becoming highly dynamic and unpredictable.The traditional manufacturing system cannot handle those exceptional events such as rush orders and machine breakdowns.Nevertheless,the multiagent manufacturing system(MAMS)becomes a critical pattern to deal with these disturbances in a real-time way.However,due to the lack of universality,MAMS is difficult to be applied to industrial sites.A new multiagent architecture and the relay cooperation model based on a positive process relation matrix are proposed to address this paper’s issue.An optimized contract net protocol(CNP)-based negotiation mechanism is developed to improve the efficiency of collaboration in the proposed architecture.Finally,a case study of self-organizing internet of things(Io T)manufacturing system is used to test the feasibility and effectiveness of the method.It is shown that the proposed self-organizing Io T manufacturing mode outperforms the traditional manufacturing system in terms of makespan and critical machine workload balancing under disturbances through comparison.展开更多
Engineering change management is a special form of problem solving where many rules must be followed to satisfy the requirements of product changes.As engineering change has great influence on the cycle and the cost o...Engineering change management is a special form of problem solving where many rules must be followed to satisfy the requirements of product changes.As engineering change has great influence on the cycle and the cost of product development,it is necessary to anticipate design changes(DCs)in advance and estimate the influence effectively.A process simulation-based method for engineering change management is proposed incorporating multiple assessment parameters.First,the change propagation model is established,which includes the formulation of change propagation influence,assessment score of DC solution.Then the optimization process of DC solution is introduced based on ant colony optimization(ACO),and an optimization algorithm is detailed to acquire the optimal DC solution automatically.Finally,a case study of belt conveyor platform is implemented to validate the proposed method.The results show that changed requirement of product can be satisfied by multiple DC solutions and the optimal one can be acquired according to the unique characteristics of each solution.展开更多
基金supported by the National Key Research and Development Program of China (No.2020YFB1710500)the National Natural Science Foundation of China(No.51805253)the Fundamental Research Funds for the Central Universities(No. NP2020304)
文摘The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.Targeting this problem,the process state model of a mixed-flow production line is analyzed.On this basis,a mathematical model of a mixed-flow job-shop scheduling problem with combined processing constraints is established based on the traditional FJSP.Then,an improved genetic algorithm with multi-segment encoding,crossover,and mutation is proposed for the mixed-flow production line problem.Finally,the proposed algorithm is applied to the production workshop of missile structural components at an aerospace institute to verify its feasibility and effectiveness.
基金supported by the National Key Research and Development Program of China(No.2018YFE0177000)National Natural Science Foundation of China(No.52075257)+1 种基金Equipment Project of Ship Assembly and Construction for the Ministry of Industry and Information Technology(No.TC190H47J)Fundamental Research Funds for the Central Universities(No.NP2020304)。
文摘As the manufacturing mode focuses more on network and community,the orders and production processes are becoming highly dynamic and unpredictable.The traditional manufacturing system cannot handle those exceptional events such as rush orders and machine breakdowns.Nevertheless,the multiagent manufacturing system(MAMS)becomes a critical pattern to deal with these disturbances in a real-time way.However,due to the lack of universality,MAMS is difficult to be applied to industrial sites.A new multiagent architecture and the relay cooperation model based on a positive process relation matrix are proposed to address this paper’s issue.An optimized contract net protocol(CNP)-based negotiation mechanism is developed to improve the efficiency of collaboration in the proposed architecture.Finally,a case study of self-organizing internet of things(Io T)manufacturing system is used to test the feasibility and effectiveness of the method.It is shown that the proposed self-organizing Io T manufacturing mode outperforms the traditional manufacturing system in terms of makespan and critical machine workload balancing under disturbances through comparison.
基金supported by the National Natural Science Foundation of China(No.51805253)Research Start-up Fund Project of Introduced Talent(No.YKJ201969)Equipment Project of Ship Assembly and Construction for the Ministry of Industry and Information Technology(No.TC190H47J)。
文摘Engineering change management is a special form of problem solving where many rules must be followed to satisfy the requirements of product changes.As engineering change has great influence on the cycle and the cost of product development,it is necessary to anticipate design changes(DCs)in advance and estimate the influence effectively.A process simulation-based method for engineering change management is proposed incorporating multiple assessment parameters.First,the change propagation model is established,which includes the formulation of change propagation influence,assessment score of DC solution.Then the optimization process of DC solution is introduced based on ant colony optimization(ACO),and an optimization algorithm is detailed to acquire the optimal DC solution automatically.Finally,a case study of belt conveyor platform is implemented to validate the proposed method.The results show that changed requirement of product can be satisfied by multiple DC solutions and the optimal one can be acquired according to the unique characteristics of each solution.