Created a new damage model for explosive for LS-DYNA3D,taking advantageof the Taylor method aimed at the high gassy and low permeability coal seam,and numericallysimulated and analyzed the deep-hole presplitting explo...Created a new damage model for explosive for LS-DYNA3D,taking advantageof the Taylor method aimed at the high gassy and low permeability coal seam,and numericallysimulated and analyzed the deep-hole presplitting explosion.The entire processof explosion was represented,including cracks caused by dynamic pressure,transmissionand vibration superposition of stress waves,as well as cracks growth driven by gas generatedby explosion.The influence of the cracks generated in the process of explosion andthe performance of improving permeability caused by the difference of interval between.explosive holes were analyzed.A reasonable interval between explosive holes of deepholepresplitting explosions in high gassy and low permeability coal seams was proposed,and the resolution of gas drainage in high gassy and low permeability coal seam was putforward.展开更多
The gas cooperative control model combined local pressure-relief with regional pressure-reliet was estaonsnea, based on the theory of multi-parameters cooperative. For the status of high gas contents, high in-situ str...The gas cooperative control model combined local pressure-relief with regional pressure-reliet was estaonsnea, based on the theory of multi-parameters cooperative. For the status of high gas contents, high in-situ stress and low-permeability of Ji-15 seam of No.12 coal mine in Pingmei Group. The law of detonation wave propagation and ground-stress change distribution were simulated by means of the finite element analysis software. The technology of high-low-blasting, composed of high blasting(deep crossing hole controlled hydraulic blasting) and low blasting (special roadway deep hole controlled blasting) were developed. The research shows that around control hole produce maximum tension fracture failure, and result in directional and controlled Masting, when the distance between control hole and blasting hole is 1.2 m. The theory makes blasting force and hydraulic force advantage superimpose, which raises the effect of pressure relief and permeability enhancements compared with general blasting. High blasting influence radius and low blasting influence radius superimposed with each other, that prevents methane dynamic disaster. The result of type approval test shows that the technology can increase gas permeability as high as 22.7-36.2 ratio, decrease gas pressure from 2.85 MPa to 0.30 MPa, increase drilling influence radius to about 9 m. The technology realizes regional overall permeability improvement, that provides a new technical measure for methane dynamic disaster prevention.展开更多
The effect of the electric field with different intensity on explosion wave pressure and flame propagation velocity of gas explosion was experimentally studied, and the effect of electric field on gas explosion and it...The effect of the electric field with different intensity on explosion wave pressure and flame propagation velocity of gas explosion was experimentally studied, and the effect of electric field on gas explosion and its propagation was theoretically analyzed from heat transportation, mass transportation, and reaction process of gas explosion. The results show that the electric field can affect gas explosion by enhancing explosion intensity and explosion pressure, thus increasing flame velocity. The electric field can offer energy to the gas explosion reaction; the effect of the electric field on gas explosion increases with the increase of electric field intensity. The electric field can increase mass transfer action, heat transfer action, convection effects, diffusion coefficient, and the reaction system entropy, which make the turbulence of gas explosion in electric field increase; therefore, the electric field can improve flame combustion velocity and flame propagation velocity, release more energy, increase shock wave energy, and then promote the gas explosion and its propagation.展开更多
基金Supported by the National Science Foundation of China(50534090,2007BAK28B01,2007BAK29B06)the Science Foundation of Anhui Province(050440403)Creative Team Plan for High School of Anhui(2006KJ005TD)
文摘Created a new damage model for explosive for LS-DYNA3D,taking advantageof the Taylor method aimed at the high gassy and low permeability coal seam,and numericallysimulated and analyzed the deep-hole presplitting explosion.The entire processof explosion was represented,including cracks caused by dynamic pressure,transmissionand vibration superposition of stress waves,as well as cracks growth driven by gas generatedby explosion.The influence of the cracks generated in the process of explosion andthe performance of improving permeability caused by the difference of interval between.explosive holes were analyzed.A reasonable interval between explosive holes of deepholepresplitting explosions in high gassy and low permeability coal seams was proposed,and the resolution of gas drainage in high gassy and low permeability coal seam was putforward.
基金Supported by the Major Project of Chinese National Program for Fundamental Research and Development (973) (2011CB201205) the Nature Science Foundation of China (50804048)
文摘The gas cooperative control model combined local pressure-relief with regional pressure-reliet was estaonsnea, based on the theory of multi-parameters cooperative. For the status of high gas contents, high in-situ stress and low-permeability of Ji-15 seam of No.12 coal mine in Pingmei Group. The law of detonation wave propagation and ground-stress change distribution were simulated by means of the finite element analysis software. The technology of high-low-blasting, composed of high blasting(deep crossing hole controlled hydraulic blasting) and low blasting (special roadway deep hole controlled blasting) were developed. The research shows that around control hole produce maximum tension fracture failure, and result in directional and controlled Masting, when the distance between control hole and blasting hole is 1.2 m. The theory makes blasting force and hydraulic force advantage superimpose, which raises the effect of pressure relief and permeability enhancements compared with general blasting. High blasting influence radius and low blasting influence radius superimposed with each other, that prevents methane dynamic disaster. The result of type approval test shows that the technology can increase gas permeability as high as 22.7-36.2 ratio, decrease gas pressure from 2.85 MPa to 0.30 MPa, increase drilling influence radius to about 9 m. The technology realizes regional overall permeability improvement, that provides a new technical measure for methane dynamic disaster prevention.
基金Supported by the National Natural Science Foundation of China (51004048) the Research Fund of State Key Laboratory of Coal Resources and Safe Mining, CUMT(09KF05)+2 种基金 the Post-Doctoral Science Foundation of China (20100470998) the Scientific Research Fund of Hunan Provincial Education Department(09C409) the State Key Base Development Plan(2005cb221506)
文摘The effect of the electric field with different intensity on explosion wave pressure and flame propagation velocity of gas explosion was experimentally studied, and the effect of electric field on gas explosion and its propagation was theoretically analyzed from heat transportation, mass transportation, and reaction process of gas explosion. The results show that the electric field can affect gas explosion by enhancing explosion intensity and explosion pressure, thus increasing flame velocity. The electric field can offer energy to the gas explosion reaction; the effect of the electric field on gas explosion increases with the increase of electric field intensity. The electric field can increase mass transfer action, heat transfer action, convection effects, diffusion coefficient, and the reaction system entropy, which make the turbulence of gas explosion in electric field increase; therefore, the electric field can improve flame combustion velocity and flame propagation velocity, release more energy, increase shock wave energy, and then promote the gas explosion and its propagation.