The mechanism of idiopathic ventricular tachycardia originating from the right ventricular outflow tract (RVOT) is not clear. Many clinical reports have suggested a mechanism of triggered activity. However, there ar...The mechanism of idiopathic ventricular tachycardia originating from the right ventricular outflow tract (RVOT) is not clear. Many clinical reports have suggested a mechanism of triggered activity. However, there are few studies investigating this be- cause of the technical difficulties associated with examining this theory. The L-type calcium current (/Ca-L), an important in- ward current of the action potential (AP), plays an important role in arrhythmogenesis. The aim of this study was to explore differences in the APs of right ventricular (RV) and RVOT cardiomyocytes, and differences in electrophysiological character- istics of the ICa-L in these myocytes. Rabbit RVOT and RV myocytes were isolated and their AP and Ic,-L were investigated us- ing the patch-clamp technique. RVOT cardiomyocytes had a wider range of AP duration (APD) than RV cardiomyocytes, with some markedly prolonged APDs and markedly shortened APDs. The markedly shortened APDs in RVOT myocytes were abolished by treatment with 4-AP, an inhibitor of the transient outward potassium current, but the markedly prolonged APDs remained, with some myocytes with a long AP plateau not repolarizing to resting potential. In addition, early afterdepolariza- tion (EAD) and second plateau responses were seen in RVOT myocytes but not in RV myocytes. RVOT myocytes had a high- er current density for/Ca-L than RV myocytes (RVOT (13.16±0.87) pA pF-1, RV (8.59±1.97) pA pF-1; P〈0.05). The ICa-L and the prolonged APD were reduced, and the EAD and second plateau response disappeared, after treatment with nifedipine (10 μmol L^-1), which blocks the Ica-L. In conclusion, there was a wider range of APDs in RVOT myocytes than in RV myocytes, which is one of the basic factors involved in arrhythmogenesis. The higher current density for ICa-L is one of the factors causing prolongation of the APD in RVOT myocytes. The combination of EAD with prolonged APD may be one of the mechanisms of RVOT-VT generation.展开更多
Two Wang resin-supported (1R,2R)-(+)-1,2-DPEN(DPEN=diphenylethylenediamine) catalysts were synthesized from cyanuric chloride and trimesoyl chloride, respectively. These two catalysts were characterized by FTIR...Two Wang resin-supported (1R,2R)-(+)-1,2-DPEN(DPEN=diphenylethylenediamine) catalysts were synthesized from cyanuric chloride and trimesoyl chloride, respectively. These two catalysts were characterized by FTIR, TGA and elemental analysis. The results demonstrated that (1R,2R)-(+)-1,2-DPEN was successfully bonded to the surface of Wang resin through the amido linkage. Subsequently, the asymmetric Michael addition of acetone to β-nitrostyrene was employed to evaluate their catalytic performance. It was found that the catalyst generated from trilnesoyl chloride exhibited much better catalytic behavior than our previously reported catalyst, likely attributed to the multiple hydrogen-bond interaction between β-nitrostyrene and amide group, which made the catalytic transition intermediates more stable. Under the optimal conditions, 76.1% β-nitrostyrene conversion and 93.8% enantioselectivity were obtained. Finally, the generality of this catalyst was examined with Michael additions of acetone to β-nitroolefms and excellent enantioselectivities(91.9% to 99.9%) were achieved.展开更多
文摘The mechanism of idiopathic ventricular tachycardia originating from the right ventricular outflow tract (RVOT) is not clear. Many clinical reports have suggested a mechanism of triggered activity. However, there are few studies investigating this be- cause of the technical difficulties associated with examining this theory. The L-type calcium current (/Ca-L), an important in- ward current of the action potential (AP), plays an important role in arrhythmogenesis. The aim of this study was to explore differences in the APs of right ventricular (RV) and RVOT cardiomyocytes, and differences in electrophysiological character- istics of the ICa-L in these myocytes. Rabbit RVOT and RV myocytes were isolated and their AP and Ic,-L were investigated us- ing the patch-clamp technique. RVOT cardiomyocytes had a wider range of AP duration (APD) than RV cardiomyocytes, with some markedly prolonged APDs and markedly shortened APDs. The markedly shortened APDs in RVOT myocytes were abolished by treatment with 4-AP, an inhibitor of the transient outward potassium current, but the markedly prolonged APDs remained, with some myocytes with a long AP plateau not repolarizing to resting potential. In addition, early afterdepolariza- tion (EAD) and second plateau responses were seen in RVOT myocytes but not in RV myocytes. RVOT myocytes had a high- er current density for/Ca-L than RV myocytes (RVOT (13.16±0.87) pA pF-1, RV (8.59±1.97) pA pF-1; P〈0.05). The ICa-L and the prolonged APD were reduced, and the EAD and second plateau response disappeared, after treatment with nifedipine (10 μmol L^-1), which blocks the Ica-L. In conclusion, there was a wider range of APDs in RVOT myocytes than in RV myocytes, which is one of the basic factors involved in arrhythmogenesis. The higher current density for ICa-L is one of the factors causing prolongation of the APD in RVOT myocytes. The combination of EAD with prolonged APD may be one of the mechanisms of RVOT-VT generation.
基金Supportted by the National Natural Science Foundation of China(No.21476163).
文摘Two Wang resin-supported (1R,2R)-(+)-1,2-DPEN(DPEN=diphenylethylenediamine) catalysts were synthesized from cyanuric chloride and trimesoyl chloride, respectively. These two catalysts were characterized by FTIR, TGA and elemental analysis. The results demonstrated that (1R,2R)-(+)-1,2-DPEN was successfully bonded to the surface of Wang resin through the amido linkage. Subsequently, the asymmetric Michael addition of acetone to β-nitrostyrene was employed to evaluate their catalytic performance. It was found that the catalyst generated from trilnesoyl chloride exhibited much better catalytic behavior than our previously reported catalyst, likely attributed to the multiple hydrogen-bond interaction between β-nitrostyrene and amide group, which made the catalytic transition intermediates more stable. Under the optimal conditions, 76.1% β-nitrostyrene conversion and 93.8% enantioselectivity were obtained. Finally, the generality of this catalyst was examined with Michael additions of acetone to β-nitroolefms and excellent enantioselectivities(91.9% to 99.9%) were achieved.