A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conce...A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.展开更多
El Nifio and Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific sea-air interactions. An asymptotic method of solving equations for the ENSO model is proposed. Based on a class...El Nifio and Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific sea-air interactions. An asymptotic method of solving equations for the ENSO model is proposed. Based on a class of oscillator of ENSO model and by employing a simple and valid method of the variational iteration, the coupled system for a sea-air oscillator model of interdecadal climate fluctuations is studied. Firstly, by introducing a set of functionals and computing the variationals, the Lagrange multipliers are obtained. And then, the generalized variational iteration expressions are constructed. Finally, by selecting appropriate initial iteration, and from the iterations expressions, the approximations of solution for the sea-air oscillator ENSO model are solved successively. The approximate dissipative travelling wave solution of equations for corresponding ENSO model is studied. It is proved from the results that the method of the variational iteration can be used for analyzing the sea surface temperature anomaly in the equatorial Pacific of the sea-air oscillator for ENSO model.展开更多
A coupled system of the interdecadal sea-air oscillator model is studied. The E1 Nifio-southem oscillation (ENSO) atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmo...A coupled system of the interdecadal sea-air oscillator model is studied. The E1 Nifio-southem oscillation (ENSO) atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The oscillator model is involved with the variations of both the eastern and western Pacific anomaly pat- terns. This paper proposes an ENSO atmospheric physics model using a method of the perturbation theory. The aim is to create an asymptotic solving method for the ENSO model. Employing the perturbed method, the asymptotic solution of corresponding problem is obtained, and the asymptotic behaviour of the solution is studied. Thus we can obtain the prognoses of the sea surface temperature anomaly and related physical quantities.展开更多
The thermally and wind-driven ocean circulation is a complicated natural phenomenon in the atmospheric physics. Hence we need to reduce it using basic models and solve the models using approximate methods. A non-linea...The thermally and wind-driven ocean circulation is a complicated natural phenomenon in the atmospheric physics. Hence we need to reduce it using basic models and solve the models using approximate methods. A non-linear model of the thermally and wind-driven ocean circulation is used in this paper. The results show that the zero solution of the linear equation is a stable focus point, which is the path curve trend origin point as time (t) trend to infinity. By using the homotopic mapping perturbation method, the exact solution of the model is obtained. The homotopic mapping perturbation method is an analytic solving method, so the obtained solution can be used for analytic operating sequentially. And then we can also obtain the diversified qualitative and quantitative behaviors for corresponding physical quantities.展开更多
A class of coupled system of the E1 Nino/La Nina-Southern Oscillation (ENSO) mechanism is studied. Using the perturbed theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic...A class of coupled system of the E1 Nino/La Nina-Southern Oscillation (ENSO) mechanism is studied. Using the perturbed theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behavior of solution for corresponding problem is considered.展开更多
文摘A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.
基金Under the auspices of National Natural Science Foundation of China (No. 40876010)Main Direction Program of Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-Q03-08)+3 种基金R & D Special Fund for Public Welfare Industry (meteorology) (No.GYHY200806010)LASG State Key Laboratory Special FundFoundation of E-Institutes of Shanghai Municipal Education Commission (No. E03004)Natural Science Foundation of Zhejiang Province (No. Y6090164)
文摘El Nifio and Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific sea-air interactions. An asymptotic method of solving equations for the ENSO model is proposed. Based on a class of oscillator of ENSO model and by employing a simple and valid method of the variational iteration, the coupled system for a sea-air oscillator model of interdecadal climate fluctuations is studied. Firstly, by introducing a set of functionals and computing the variationals, the Lagrange multipliers are obtained. And then, the generalized variational iteration expressions are constructed. Finally, by selecting appropriate initial iteration, and from the iterations expressions, the approximations of solution for the sea-air oscillator ENSO model are solved successively. The approximate dissipative travelling wave solution of equations for corresponding ENSO model is studied. It is proved from the results that the method of the variational iteration can be used for analyzing the sea surface temperature anomaly in the equatorial Pacific of the sea-air oscillator for ENSO model.
基金Under the auspices of National Natural Science Foundation of China (No.40876010)Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-Q03-08)+2 种基金Research and Development Special Fund for Public Welfare Industry (Meteorology) (No. GYHY200806010)LASG State Key Laboratory Special Fund, Foundation of E-Institutes of Shanghai Municipal Education Commission (No.E03004)Natural Science Foundation of Education Department of Fujian Province (No.JA10288)
文摘A coupled system of the interdecadal sea-air oscillator model is studied. The E1 Nifio-southem oscillation (ENSO) atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The oscillator model is involved with the variations of both the eastern and western Pacific anomaly pat- terns. This paper proposes an ENSO atmospheric physics model using a method of the perturbation theory. The aim is to create an asymptotic solving method for the ENSO model. Employing the perturbed method, the asymptotic solution of corresponding problem is obtained, and the asymptotic behaviour of the solution is studied. Thus we can obtain the prognoses of the sea surface temperature anomaly and related physical quantities.
基金Under the auspices of National Natural Science Foundation of China(No.40876010)Main Direction Program of Knowledge Innovation Programs of the Chinese Academy of Sciences(No.KZCX2-YW-Q03-08)+3 种基金R & D Special Fund for Public Welfare Industry(meteorology)(No.GYHY200806010)LASG State Key Laboratory Special FundFoundation of Shanghai Municipal Education Commission(No.E03004)Natural Science Foundation of Zhejiang Province(No.Y6090164)
文摘The thermally and wind-driven ocean circulation is a complicated natural phenomenon in the atmospheric physics. Hence we need to reduce it using basic models and solve the models using approximate methods. A non-linear model of the thermally and wind-driven ocean circulation is used in this paper. The results show that the zero solution of the linear equation is a stable focus point, which is the path curve trend origin point as time (t) trend to infinity. By using the homotopic mapping perturbation method, the exact solution of the model is obtained. The homotopic mapping perturbation method is an analytic solving method, so the obtained solution can be used for analytic operating sequentially. And then we can also obtain the diversified qualitative and quantitative behaviors for corresponding physical quantities.
基金The National Natural Science Foundation of China under contract Nos 90111011 and 10471039the National Key Project for Basics Research of China under contract Nos 2003CB415101-03 and 2004CB418304+1 种基金the Knowledge Innovation Project of the Chinese Academy of Sciences under contract NO.KZCXZ-YW-Q03-08LASG State Key Laboratory Special Fund and the E-Insitutes of Shanghai Municipal Education Commission under contract NO.N.E03004
文摘A class of coupled system of the E1 Nino/La Nina-Southern Oscillation (ENSO) mechanism is studied. Using the perturbed theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behavior of solution for corresponding problem is considered.