针对带时间窗的同时取送货车辆路径问题(vehicle routing problem with simultaneous pickup-delivery and time windows,VRPSPDTW),构建了以车辆使用成本、车辆行驶距离成本总支出最小化的路径优化数学模型,提出自适应头脑风暴算法(ada...针对带时间窗的同时取送货车辆路径问题(vehicle routing problem with simultaneous pickup-delivery and time windows,VRPSPDTW),构建了以车辆使用成本、车辆行驶距离成本总支出最小化的路径优化数学模型,提出自适应头脑风暴算法(adaptive brain storm optimization,ABSO)进行求解。全局搜索阶段,采用多项惩罚方式扩大搜索区域,并使用聚类及三种路径搜索策略进行全局搜索;局部搜索阶段,将六种破坏-修复算子作为备选集合,进而设计自适应动态选择邻域搜索机制,增强局部搜索效能。选取测试数据集和实际案例对算法性能进行测试,实验结果表明针对小规模标准算例,所提算法全部取得了当前已知最优解;对于大规模标准算例,通过与遗传算法、并行模拟退火算法、离散布谷鸟算法对比,所提算法实验计算结果有7.52%~12.03%的提升;对于实际案例,所提算法在收敛速度和寻优能力方面均展示出优越性,充分验证了所提算法对解决VRPSPDTW问题的有效性。展开更多
文摘针对带时间窗的同时取送货车辆路径问题(vehicle routing problem with simultaneous pickup-delivery and time windows,VRPSPDTW),构建了以车辆使用成本、车辆行驶距离成本总支出最小化的路径优化数学模型,提出自适应头脑风暴算法(adaptive brain storm optimization,ABSO)进行求解。全局搜索阶段,采用多项惩罚方式扩大搜索区域,并使用聚类及三种路径搜索策略进行全局搜索;局部搜索阶段,将六种破坏-修复算子作为备选集合,进而设计自适应动态选择邻域搜索机制,增强局部搜索效能。选取测试数据集和实际案例对算法性能进行测试,实验结果表明针对小规模标准算例,所提算法全部取得了当前已知最优解;对于大规模标准算例,通过与遗传算法、并行模拟退火算法、离散布谷鸟算法对比,所提算法实验计算结果有7.52%~12.03%的提升;对于实际案例,所提算法在收敛速度和寻优能力方面均展示出优越性,充分验证了所提算法对解决VRPSPDTW问题的有效性。