This paper focused on the zircon sensitive high resolution ion micro-probeU-Pb geochronology of the tourmalinites from boron-bearing series of borate deposits in Eastern Liaoning. The zircons commonly have core-rim st...This paper focused on the zircon sensitive high resolution ion micro-probeU-Pb geochronology of the tourmalinites from boron-bearing series of borate deposits in Eastern Liaoning. The zircons commonly have core-rim structures, most cores show oscillatory zoning in cathodoluminescence and plane polarized light images, suggesting a magmatic detrital origin. Ages of the magmatic detrital zircons from the hyalotonrmalite samples (N13) and (N14) are 2175 ± 5 Ma and 2171 ± 9 Ma, respectively. Moreover, metamorphic zircon from the sample (N13) shows an age of 1906 ± 4 Ma. Zircon core and rim from the hyalotourmalite sample (N02) record ages of 2171 ± 6 Ma and 1889± 62 Ma, which are explained as indicating the formation and metamorphic ages. Combined with the geological and geochemical studies, it can be concluded that the tourmalinites are formed during sedimentary exhalative mineralizations in the mid-Paleoproterozoic (-170 Ma) and underwent the metamorphism in the late-Paleoproterozoic (-1900 Ma). The tourmalinites are the products of submarine acid volcanism in the extension rifting phase of the Liaoji Paleoproterozoic Rift, the rockforming materials of which are derived from the mantle sources with recycling crustal contamination. The emergence of tourmalinites not only indicates the mid-Paleoproterozoic tectonic-magmatic processes, but also provides impetus, heat and material sources for the mineralization of borate deposits in Eastern Liaoning.展开更多
The timing and mechanisms of lithospheric thinning and destruction of the North China Craton(NCC)remain controversial,and the overall geodynamics of the process are poorly understood.This paper documents Late Triassic...The timing and mechanisms of lithospheric thinning and destruction of the North China Craton(NCC)remain controversial,and the overall geodynamics of the process are poorly understood.This paper documents Late Triassic igneous rocks including monzogranite,gabbro,and diorite from the Xiuyan District on the Liaodong Peninsula in the eastern NCC,which have LA-ICP-MS zircon U-Pb ages of 229.0±0.4 Ma,216.2±0.9 Ma,and 210.6±2.0 Ma,respectively.Monzogranite shows high-SiO_(2) adakite affinity,negative ε_(Hf)(t)values(-20.6 to-17.9),and old T_(DM2) ages(3.53-3.29 Ga),suggesting that their parental magma was derived from thickened Paleoarchean mafic lower crust and minor mantle materials that were also involved their generation.Gabbro is ultrapotassic,strongly enriched in LREEs and LILEs,depleted in HFSEs,and has evolved zircon Hf isotopes with negative ε_(Hf) of -10.04 to-5.85 and old T_(DM2) ages(2.59-2.22 Ga).These are diagnostic signatures of a crustal component,but their high contents of Mg O,Cr,Co,Ni indicate that the primary magma originated from enriched mantle.Diorite is enriched in LILEs and LREEs,depleted in HFSEs(with negative Nb,Ta,and Ti anomalies),and contains negative ε_(Hf)(t)values(-13.64 to-11.01).Compared with the gabbro,the diorite is relatively enriched in Nb,Ta and HREEs,and also contains younger T_(DM2) ages(2.11-1.94 Ga),suggesting that the diorite was formed by mixing between ancient lower crust-derived felsic magmas and asthenospheric mantle-derived magmas.Field observations,geochronology,geochemistry,and zircon Lu-Hf isotopes indicate that Late Triassic magmatism and tectonic activity resulted from deep subduction of the Yangtze Craton beneath the NCC in the Xiuyan area.This phase of tectonic activity was completed in the eastern NCC by the Late Triassic(216 Ma),and was subsequently followed by lithospheric thinning that began in the Late Triassic.展开更多
The Southern Great Xing'an Range,Northeast China,is located in the eastern part of the Central Asian Orogenic Belt.It is considered to be one of the most important metallogenic belts,commonly hosting a series of s...The Southern Great Xing'an Range,Northeast China,is located in the eastern part of the Central Asian Orogenic Belt.It is considered to be one of the most important metallogenic belts,commonly hosting a series of skarn.porphyry and magmatic hydrothermal Pb-Zn-Ag-Cu Mo-Sn polymetallic deposits(Fig.1).Complex tectonic events have occurred in this region,including the closure of the Palco-Asian Ocean in the Late Palaeozoic,the opening and closure of the Mongol Okhotsk Ocean and the subduction of the Paleo-Pacific Ocean in the Mesozoic.展开更多
基金supported by the National Natural Science Foundation of China grant(40073013)
文摘This paper focused on the zircon sensitive high resolution ion micro-probeU-Pb geochronology of the tourmalinites from boron-bearing series of borate deposits in Eastern Liaoning. The zircons commonly have core-rim structures, most cores show oscillatory zoning in cathodoluminescence and plane polarized light images, suggesting a magmatic detrital origin. Ages of the magmatic detrital zircons from the hyalotonrmalite samples (N13) and (N14) are 2175 ± 5 Ma and 2171 ± 9 Ma, respectively. Moreover, metamorphic zircon from the sample (N13) shows an age of 1906 ± 4 Ma. Zircon core and rim from the hyalotourmalite sample (N02) record ages of 2171 ± 6 Ma and 1889± 62 Ma, which are explained as indicating the formation and metamorphic ages. Combined with the geological and geochemical studies, it can be concluded that the tourmalinites are formed during sedimentary exhalative mineralizations in the mid-Paleoproterozoic (-170 Ma) and underwent the metamorphism in the late-Paleoproterozoic (-1900 Ma). The tourmalinites are the products of submarine acid volcanism in the extension rifting phase of the Liaoji Paleoproterozoic Rift, the rockforming materials of which are derived from the mantle sources with recycling crustal contamination. The emergence of tourmalinites not only indicates the mid-Paleoproterozoic tectonic-magmatic processes, but also provides impetus, heat and material sources for the mineralization of borate deposits in Eastern Liaoning.
基金supported by the project of China Geological Survey(Grant No.DD20190438)。
文摘The timing and mechanisms of lithospheric thinning and destruction of the North China Craton(NCC)remain controversial,and the overall geodynamics of the process are poorly understood.This paper documents Late Triassic igneous rocks including monzogranite,gabbro,and diorite from the Xiuyan District on the Liaodong Peninsula in the eastern NCC,which have LA-ICP-MS zircon U-Pb ages of 229.0±0.4 Ma,216.2±0.9 Ma,and 210.6±2.0 Ma,respectively.Monzogranite shows high-SiO_(2) adakite affinity,negative ε_(Hf)(t)values(-20.6 to-17.9),and old T_(DM2) ages(3.53-3.29 Ga),suggesting that their parental magma was derived from thickened Paleoarchean mafic lower crust and minor mantle materials that were also involved their generation.Gabbro is ultrapotassic,strongly enriched in LREEs and LILEs,depleted in HFSEs,and has evolved zircon Hf isotopes with negative ε_(Hf) of -10.04 to-5.85 and old T_(DM2) ages(2.59-2.22 Ga).These are diagnostic signatures of a crustal component,but their high contents of Mg O,Cr,Co,Ni indicate that the primary magma originated from enriched mantle.Diorite is enriched in LILEs and LREEs,depleted in HFSEs(with negative Nb,Ta,and Ti anomalies),and contains negative ε_(Hf)(t)values(-13.64 to-11.01).Compared with the gabbro,the diorite is relatively enriched in Nb,Ta and HREEs,and also contains younger T_(DM2) ages(2.11-1.94 Ga),suggesting that the diorite was formed by mixing between ancient lower crust-derived felsic magmas and asthenospheric mantle-derived magmas.Field observations,geochronology,geochemistry,and zircon Lu-Hf isotopes indicate that Late Triassic magmatism and tectonic activity resulted from deep subduction of the Yangtze Craton beneath the NCC in the Xiuyan area.This phase of tectonic activity was completed in the eastern NCC by the Late Triassic(216 Ma),and was subsequently followed by lithospheric thinning that began in the Late Triassic.
基金the National Natural Science Foundation of China(grant No.41573036).
文摘The Southern Great Xing'an Range,Northeast China,is located in the eastern part of the Central Asian Orogenic Belt.It is considered to be one of the most important metallogenic belts,commonly hosting a series of skarn.porphyry and magmatic hydrothermal Pb-Zn-Ag-Cu Mo-Sn polymetallic deposits(Fig.1).Complex tectonic events have occurred in this region,including the closure of the Palco-Asian Ocean in the Late Palaeozoic,the opening and closure of the Mongol Okhotsk Ocean and the subduction of the Paleo-Pacific Ocean in the Mesozoic.