Objective To examine the role of Cd-induced reactive oxygen species(ROS) generation in the apoptosis of neuronal cells. Methods Neuronal cells(primary rat cerebral cortical neurons and PC12 cells) were incubated w...Objective To examine the role of Cd-induced reactive oxygen species(ROS) generation in the apoptosis of neuronal cells. Methods Neuronal cells(primary rat cerebral cortical neurons and PC12 cells) were incubated with or without Cd post-pretreatment with rapamycin(Rap) or N-acetyl-L-cysteine(NAC). Cell viability was determined by MTT assay, apoptosis was examined using flow cytometry and fluorescence microscopy, and the activation of phosphoinositide 3’-kinase/protein kinase B(Akt)/mammalian target of rapamycin(m TOR) and mitochondrial apoptotic pathways were measured by western blotting or immunofluorescence assays. Results Cd-induced activation of Akt/m TOR signaling, including Akt, m TOR, p70 S6 kinase(p70 S6K), and eukaryotic initiation factor 4E binding protein 1(4E-BP1). Rap, an m TOR inhibitor and NAC, a ROS scavenger, blocked Cd-induced activation of Akt/m TOR signaling and apoptosis of neuronal cells. Furthermore, NAC blocked the decrease of B-cell lymphoma 2/Bcl-2 associated X protein(Bcl-2/Bax) ratio, release of cytochrome c, cleavage of caspase-3 and poly(ADP-ribose) polymerase(PARP), and nuclear translocation of apoptosis-inducing factor(AIF) and endonuclease G(Endo G). Conclusion Cd-induced ROS generation activates Akt/m TOR and mitochondrial pathways, leading to apoptosis of neuronal cells. Our findings suggest that m TOR inhibitors or antioxidants have potential for preventing Cd-induced neurodegenerative diseases.展开更多
Objective To investigate the cytotoxic mechanism of cadmium(Cd) on cerebral cortical neurons.Methods The primary cultures of rat cerebral cortical neurons were treated with different concentrations of cadmium acetat...Objective To investigate the cytotoxic mechanism of cadmium(Cd) on cerebral cortical neurons.Methods The primary cultures of rat cerebral cortical neurons were treated with different concentrations of cadmium acetate(0,5,10,and 20 μmol/L),and then the cell viability,apoptosis,ultrastructure,intracellular [Ca2+]i and reactive oxygen species(ROS) levels,mitochondrial membrane potential(ΔΨ),activities of catalase(CAT) and superoxide dismutase(SOD) were measured.Results A progressive loss in cell viability and an increased number of apoptotic cells were observed.In addition,Cd-induced apoptotic morphological changes in cerebral cortical neurons were also demonstrated by Hoechst 33258 staining.Meanwhile,ultrastructural changes were distortion of mitochondrial cristae and an unusual arrangement.Simultaneously,elevation of intracellular [Ca2+]i and ROS levels,depletion of ΔΨ were revealed in a dose-dependent manner during the exposure.Moreover,CAT and SOD activities in the living cells increased significantly.Conclusion Exposure of cortical neurons to different doses of Cd led to cellular death,mediated by an apoptotic mechanism,and the apoptotic death induced by oxidative stress may be a potential reason.And the disorder of intracellular homeostasis caused by oxidative stress and mitochondrial dysfunction may be a trigger for apoptosis in cortical neurons.展开更多
Cadmium (Cd) is an elemental heavy metal with widely recognized toxicity. Its long-term use in industrial processes and daily activities has caused alarming levels of Cd contamination in the natural environment. Acc...Cadmium (Cd) is an elemental heavy metal with widely recognized toxicity. Its long-term use in industrial processes and daily activities has caused alarming levels of Cd contamination in the natural environment. According to the estimates by the Agency of Toxic Substances and Disease Registry in the US, 25 000 to 30 000 metric tons of Cd is annually released to the environment . Results of previous studies have demonstrated that several organs are targets of Cd, but the most important of these targeted organs may be the testes.展开更多
Hearing loss (HL) is the most common sensory disorder, affecting all age groups, ethnicities, and gen-ders. According to World Health Organization (WHO) estimates in 2005, 278 million people worldwide have moderate to...Hearing loss (HL) is the most common sensory disorder, affecting all age groups, ethnicities, and gen-ders. According to World Health Organization (WHO) estimates in 2005, 278 million people worldwide have moderate to profound HL in both ears. Results of the 2002 National Health Interview Survey indicate that nearly 31 million of all non-institutionalized adults (aged 18 and over) in the United States have trouble hearing. Epidemiological studies have estimated that approximately 50%of profound HL can be attributed to genetic causes. With over 60 genes implicated in nonsyndromic hearing loss, it is also an extremely het-erogeneous trait. Recent progress in identifying genes responsible for hearing loss enables otolaryngologists and other clinicians to apply molecular diagnosis by genetic testing. The advent of the $1000 genome has the potential to revolutionize the identification of genes and their mutations underlying genetic disorders. This is especially true for extremely heterogeneous Mendelian conditions such as deafness, where the muta-tion, and indeed the gene, may be private. The recent technological advances in target-enrichment methods and next generation sequencing offer a unique opportunity to break through the barriers of limitations im-posed by gene arrays. These approaches now allow for the complete analysis of all known deafness-causing genes and will result in a new wave of discoveries of the remaining genes for Mendelian disorders. This re-view focuses on describing genotype-phenotype correlations of the most frequent genes including GJB2, which is responsible for more than half of cases, followed by other common genes and on discussing the im-pact of genomic advances for comprehensive genetic testing and gene discovery in hereditary hearing loss.展开更多
基金supported by the National Natural Science Foundation of China(No.31101866 and 31302058)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China Postdoctoral Science Foundation funded project(2015M581874)Jiangsu Planned Projects for Postdoctoral Research Funds(1501072A)
文摘Objective To examine the role of Cd-induced reactive oxygen species(ROS) generation in the apoptosis of neuronal cells. Methods Neuronal cells(primary rat cerebral cortical neurons and PC12 cells) were incubated with or without Cd post-pretreatment with rapamycin(Rap) or N-acetyl-L-cysteine(NAC). Cell viability was determined by MTT assay, apoptosis was examined using flow cytometry and fluorescence microscopy, and the activation of phosphoinositide 3’-kinase/protein kinase B(Akt)/mammalian target of rapamycin(m TOR) and mitochondrial apoptotic pathways were measured by western blotting or immunofluorescence assays. Results Cd-induced activation of Akt/m TOR signaling, including Akt, m TOR, p70 S6 kinase(p70 S6K), and eukaryotic initiation factor 4E binding protein 1(4E-BP1). Rap, an m TOR inhibitor and NAC, a ROS scavenger, blocked Cd-induced activation of Akt/m TOR signaling and apoptosis of neuronal cells. Furthermore, NAC blocked the decrease of B-cell lymphoma 2/Bcl-2 associated X protein(Bcl-2/Bax) ratio, release of cytochrome c, cleavage of caspase-3 and poly(ADP-ribose) polymerase(PARP), and nuclear translocation of apoptosis-inducing factor(AIF) and endonuclease G(Endo G). Conclusion Cd-induced ROS generation activates Akt/m TOR and mitochondrial pathways, leading to apoptosis of neuronal cells. Our findings suggest that m TOR inhibitors or antioxidants have potential for preventing Cd-induced neurodegenerative diseases.
基金supported by the National Nature Science Foundation of China (no.30972229 and 31101866)a project Funded by Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Objective To investigate the cytotoxic mechanism of cadmium(Cd) on cerebral cortical neurons.Methods The primary cultures of rat cerebral cortical neurons were treated with different concentrations of cadmium acetate(0,5,10,and 20 μmol/L),and then the cell viability,apoptosis,ultrastructure,intracellular [Ca2+]i and reactive oxygen species(ROS) levels,mitochondrial membrane potential(ΔΨ),activities of catalase(CAT) and superoxide dismutase(SOD) were measured.Results A progressive loss in cell viability and an increased number of apoptotic cells were observed.In addition,Cd-induced apoptotic morphological changes in cerebral cortical neurons were also demonstrated by Hoechst 33258 staining.Meanwhile,ultrastructural changes were distortion of mitochondrial cristae and an unusual arrangement.Simultaneously,elevation of intracellular [Ca2+]i and ROS levels,depletion of ΔΨ were revealed in a dose-dependent manner during the exposure.Moreover,CAT and SOD activities in the living cells increased significantly.Conclusion Exposure of cortical neurons to different doses of Cd led to cellular death,mediated by an apoptotic mechanism,and the apoptotic death induced by oxidative stress may be a potential reason.And the disorder of intracellular homeostasis caused by oxidative stress and mitochondrial dysfunction may be a trigger for apoptosis in cortical neurons.
基金supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(No.08KJD230002)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Cadmium (Cd) is an elemental heavy metal with widely recognized toxicity. Its long-term use in industrial processes and daily activities has caused alarming levels of Cd contamination in the natural environment. According to the estimates by the Agency of Toxic Substances and Disease Registry in the US, 25 000 to 30 000 metric tons of Cd is annually released to the environment . Results of previous studies have demonstrated that several organs are targets of Cd, but the most important of these targeted organs may be the testes.
文摘Hearing loss (HL) is the most common sensory disorder, affecting all age groups, ethnicities, and gen-ders. According to World Health Organization (WHO) estimates in 2005, 278 million people worldwide have moderate to profound HL in both ears. Results of the 2002 National Health Interview Survey indicate that nearly 31 million of all non-institutionalized adults (aged 18 and over) in the United States have trouble hearing. Epidemiological studies have estimated that approximately 50%of profound HL can be attributed to genetic causes. With over 60 genes implicated in nonsyndromic hearing loss, it is also an extremely het-erogeneous trait. Recent progress in identifying genes responsible for hearing loss enables otolaryngologists and other clinicians to apply molecular diagnosis by genetic testing. The advent of the $1000 genome has the potential to revolutionize the identification of genes and their mutations underlying genetic disorders. This is especially true for extremely heterogeneous Mendelian conditions such as deafness, where the muta-tion, and indeed the gene, may be private. The recent technological advances in target-enrichment methods and next generation sequencing offer a unique opportunity to break through the barriers of limitations im-posed by gene arrays. These approaches now allow for the complete analysis of all known deafness-causing genes and will result in a new wave of discoveries of the remaining genes for Mendelian disorders. This re-view focuses on describing genotype-phenotype correlations of the most frequent genes including GJB2, which is responsible for more than half of cases, followed by other common genes and on discussing the im-pact of genomic advances for comprehensive genetic testing and gene discovery in hereditary hearing loss.