The fluid evolution and reservoir formation model of the ultra-deep gas reservoirs in the Permian Qixia Formation of the northwestern Sichuan Basin are investigated by using thin section,cathodoluminescence,inclusion ...The fluid evolution and reservoir formation model of the ultra-deep gas reservoirs in the Permian Qixia Formation of the northwestern Sichuan Basin are investigated by using thin section,cathodoluminescence,inclusion temperature and U-Pb isotopic dating,combined with gas source identification plates and reservoir formation evolution profiles established based on burial history,thermal history,reservoir formation history and diagenetic evolution sequence.The fluid evolution of the marine ultra-deep gas reservoirs in the Qixia Formation has undergone two stages of dolomitization and one phase of hydrothermal action,two stages of oil and gas charging and two stages of associated burial dissolution.The diagenetic fluids include ancient seawater,atmospheric freshwater,deep hydrothermal fluid and hydrocarbon fluids.The two stages of hydrocarbon charging happened in the Late Triassic and Late Jurassic–Early Cretaceous respectively,and the Middle to Late Cretaceous is the period when the crude oil cracked massively into gas.The gas reservoirs in deep marine Permian strata of northwest Sichuan feature multiple source rocks,composite transportation,differential accumulation and late finalization.The natural gas in the Permian is mainly cracked gas from Permian marine mixed hydrocarbon source rocks,with cracked gas from crude oil in the deeper Sinian strata in local parts.The scale development of paleo-hydrocarbon reservoirs and the stable and good preservation conditions are the keys to the forming large-scale gas reservoirs.展开更多
The complexity of diagenesis and hydrocarbon accumulation in the deep reservoirs in southern Junggar Basin restricts hydrocarbon exploration in the lower reservoir assemblage. The lithofacies and diagenesis of reservo...The complexity of diagenesis and hydrocarbon accumulation in the deep reservoirs in southern Junggar Basin restricts hydrocarbon exploration in the lower reservoir assemblage. The lithofacies and diagenesis of reservoirs in the Cretaceous Qingshuihe Formation in the Gaoquan structure of the Sikeshu Sag, southern Junggar Basin were analyzed. On this basis, the thermal history was calibrated using calcite in-situ U-Pb dating and fluid inclusion analysis to depict the hydrocarbon accumulation process in the Gaoquan structure. The results show that the Qingshuihe reservoir experienced two phases of calcite cementation and three phases of hydrocarbon charging. The calcite cements are dated to be (122.1±6.4) Ma, (14.4±1.0) Ma - (14.2±0.3) Ma. The hydrocarbon charging events occurred at around 14.2-30.0 Ma (low-mature oil), 14.2 Ma (mature oil), and 2 Ma (high-mature gas). The latter two phases of hydrocarbon charging contributed dominantly to the formation of reservoir. Due to the S-N compressive thrust activity during the late Himalayan period since 2 Ma, the traps in the Gaoquan structure were reshaped, especially the effective traps which developed in the main reservoir-forming period were decreased significantly in scale, resulting in weak hydrocarbon shows in the middle-lower part of the structure. This indicates that the effective traps in key reservoir-forming period controlled hydrocarbon enrichment and distribution in the lower reservoir assemblage. Calcite U-Pb dating combined with fluid inclusion analysis can help effectively describe the complex diagenesis and hydrocarbon accumulation process in the central-west part of the basin.展开更多
基金Supported by the Special Project of National Key R&D Plan(2017YFC0603106).
文摘The fluid evolution and reservoir formation model of the ultra-deep gas reservoirs in the Permian Qixia Formation of the northwestern Sichuan Basin are investigated by using thin section,cathodoluminescence,inclusion temperature and U-Pb isotopic dating,combined with gas source identification plates and reservoir formation evolution profiles established based on burial history,thermal history,reservoir formation history and diagenetic evolution sequence.The fluid evolution of the marine ultra-deep gas reservoirs in the Qixia Formation has undergone two stages of dolomitization and one phase of hydrothermal action,two stages of oil and gas charging and two stages of associated burial dissolution.The diagenetic fluids include ancient seawater,atmospheric freshwater,deep hydrothermal fluid and hydrocarbon fluids.The two stages of hydrocarbon charging happened in the Late Triassic and Late Jurassic–Early Cretaceous respectively,and the Middle to Late Cretaceous is the period when the crude oil cracked massively into gas.The gas reservoirs in deep marine Permian strata of northwest Sichuan feature multiple source rocks,composite transportation,differential accumulation and late finalization.The natural gas in the Permian is mainly cracked gas from Permian marine mixed hydrocarbon source rocks,with cracked gas from crude oil in the deeper Sinian strata in local parts.The scale development of paleo-hydrocarbon reservoirs and the stable and good preservation conditions are the keys to the forming large-scale gas reservoirs.
基金Supported by PetroChina Science and Technology Development Project(2023ZZ0206,2021DJ0303,2021DJ0105,2021DJ0203)National Natural ScienceFoundation of China(U22B6002).
文摘The complexity of diagenesis and hydrocarbon accumulation in the deep reservoirs in southern Junggar Basin restricts hydrocarbon exploration in the lower reservoir assemblage. The lithofacies and diagenesis of reservoirs in the Cretaceous Qingshuihe Formation in the Gaoquan structure of the Sikeshu Sag, southern Junggar Basin were analyzed. On this basis, the thermal history was calibrated using calcite in-situ U-Pb dating and fluid inclusion analysis to depict the hydrocarbon accumulation process in the Gaoquan structure. The results show that the Qingshuihe reservoir experienced two phases of calcite cementation and three phases of hydrocarbon charging. The calcite cements are dated to be (122.1±6.4) Ma, (14.4±1.0) Ma - (14.2±0.3) Ma. The hydrocarbon charging events occurred at around 14.2-30.0 Ma (low-mature oil), 14.2 Ma (mature oil), and 2 Ma (high-mature gas). The latter two phases of hydrocarbon charging contributed dominantly to the formation of reservoir. Due to the S-N compressive thrust activity during the late Himalayan period since 2 Ma, the traps in the Gaoquan structure were reshaped, especially the effective traps which developed in the main reservoir-forming period were decreased significantly in scale, resulting in weak hydrocarbon shows in the middle-lower part of the structure. This indicates that the effective traps in key reservoir-forming period controlled hydrocarbon enrichment and distribution in the lower reservoir assemblage. Calcite U-Pb dating combined with fluid inclusion analysis can help effectively describe the complex diagenesis and hydrocarbon accumulation process in the central-west part of the basin.