为了解决Vehicle to Everything(V2X)毫米波通信系统延时高、链路易阻塞等问题,基于车辆和用户终端周围环境状态信息的感知,提出一种视觉辅助的能效最大阻塞预测方法。利用视觉感知模型实现系统对目标用户以及周围障碍物的精准感知,结...为了解决Vehicle to Everything(V2X)毫米波通信系统延时高、链路易阻塞等问题,基于车辆和用户终端周围环境状态信息的感知,提出一种视觉辅助的能效最大阻塞预测方法。利用视觉感知模型实现系统对目标用户以及周围障碍物的精准感知,结合深度强化学习设计了一种融合特征和时间注意力的DA-DBLSTM网络预测未来链路阻塞到达时间,与传统注意力相比,该融合注意力不仅可以关注每个时间单元中的不同特征,而且关注不同时间单元的时序信息,使检测效果更优。仿真和分析结果表明,提出的DA-DBLSTM网络预测链路阻塞效果明显,在均方误差(Mean Square Error,MSE)、均方根误差(Root Mean Square Error,RMSE)、平均绝对误差(Mean Absolute Error,MAE)和平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)方面均优于现有方法。展开更多
This study proposes a tractable approach to analyze the physical-layer security in the downlink of a multi-tier heterogeneous cellular network. This method is based on stochastic geometry, has low computational comple...This study proposes a tractable approach to analyze the physical-layer security in the downlink of a multi-tier heterogeneous cellular network. This method is based on stochastic geometry, has low computational complexity, and uses the two-dimensional Poisson point process to model the locations of K-tier base stations and receivers, including those of legitimate users and eavesdroppers. Then, the achievable secrecy rates for an arbitrary user are determined and the upper and lower bounds of secrecy coverage probability derived on the condition that cross-tier interference is the main contributor to aggregate interference. Finally, our analysis results reveal the innate connections between information-theoretic security and the spatial densities of legitimate and malicious nodes.展开更多
基金supported in part by National Natural Science Foundation of China under Grant No.61401510,61521003National High-tech R&D Program(863 Program)under Grant No.2015AA01A708
文摘This study proposes a tractable approach to analyze the physical-layer security in the downlink of a multi-tier heterogeneous cellular network. This method is based on stochastic geometry, has low computational complexity, and uses the two-dimensional Poisson point process to model the locations of K-tier base stations and receivers, including those of legitimate users and eavesdroppers. Then, the achievable secrecy rates for an arbitrary user are determined and the upper and lower bounds of secrecy coverage probability derived on the condition that cross-tier interference is the main contributor to aggregate interference. Finally, our analysis results reveal the innate connections between information-theoretic security and the spatial densities of legitimate and malicious nodes.