Reactive oxygen species(ROS) plays a key role in human heart diseases. Glutathione peroxidase(GPX) functions as an antioxidant as it catalyzes the reduction of hydroperoxide. In order to investigate the antioxidan...Reactive oxygen species(ROS) plays a key role in human heart diseases. Glutathione peroxidase(GPX) functions as an antioxidant as it catalyzes the reduction of hydroperoxide. In order to investigate the antioxidant effect of human selenium-containing single-chain Fv(Se-scFv-B3), a new mimic of GPX, a model system of hydrogen peroxide(H202)-induced rat cardiac myocyte damage was established. The cardiac myocyte damage was characte- rized in terms of cell viability, lipid peroxidation, cell membrane integrity, and intracellular H202 level. The Se-scFv-B3 significantly reduced H2O2-induced cell damage as shown by the increase of cell viability, the decline of malondialdehyde(MDA) production, lactate dehydrogenase(LDH) release, and intracellular H2O2 level. So Se-scFv-B3 may have a great potential in the treatment of human heart diseases induced by ROS.展开更多
In order to enhance the glutathione peroxidase(GPX) catalytic activity of the selenium-containing single-chain variable fragments(Se-scFv), a novel human scFv was designed on the basis of the structure of human an...In order to enhance the glutathione peroxidase(GPX) catalytic activity of the selenium-containing single-chain variable fragments(Se-scFv), a novel human scFv was designed on the basis of the structure of human antibody and optimized via bioinformatics methods such as homologous sequence analysis, three-dimensional(3D) model building, binding-site analysis and docking. The DNA sequence of the new human scFv was synthesized and cloned into the expression vector pET22b(+), then the scFv protein was expressed in soluble form in Escherichia coli BL21(DE3) and purified by Ni2+-immobilized metal affinity chromatography(IMAC). The serine residue of scFv in the active site was converted into selenocysteine(Sec) with the chemical modification method, thus, the human Se-scFv with GPX activity was obtained. The GPX activity of the Se-scFv protein was characterized. Compared with other Se-scFv, the new human Se-scFv showed similar efficiency for catalyzing the reduction of hydrogen peroxide by glutathione. It exhibited pH and temperature dependent catalytic activity and a typical ping-pong kinetic mechanism.展开更多
基金Supported by the Grants from Department of Science and Technology of Jilin Province, China(No.20070726)Bureau of Science and Technology of Changchun City, China(No.2005038).
文摘Reactive oxygen species(ROS) plays a key role in human heart diseases. Glutathione peroxidase(GPX) functions as an antioxidant as it catalyzes the reduction of hydroperoxide. In order to investigate the antioxidant effect of human selenium-containing single-chain Fv(Se-scFv-B3), a new mimic of GPX, a model system of hydrogen peroxide(H202)-induced rat cardiac myocyte damage was established. The cardiac myocyte damage was characte- rized in terms of cell viability, lipid peroxidation, cell membrane integrity, and intracellular H202 level. The Se-scFv-B3 significantly reduced H2O2-induced cell damage as shown by the increase of cell viability, the decline of malondialdehyde(MDA) production, lactate dehydrogenase(LDH) release, and intracellular H2O2 level. So Se-scFv-B3 may have a great potential in the treatment of human heart diseases induced by ROS.
基金Supported by the National Natural Science Foundation of China(No.30970608)the Applicative Technological Project of Bureau of Science and Technology of Changchun City, China(No.2009045)+1 种基金the Development and Planning Major Program of Jilin Provincial Science and Technology Department, China(No.20100948)the Innovation Method Fund of China (No.2008IM040800)
文摘In order to enhance the glutathione peroxidase(GPX) catalytic activity of the selenium-containing single-chain variable fragments(Se-scFv), a novel human scFv was designed on the basis of the structure of human antibody and optimized via bioinformatics methods such as homologous sequence analysis, three-dimensional(3D) model building, binding-site analysis and docking. The DNA sequence of the new human scFv was synthesized and cloned into the expression vector pET22b(+), then the scFv protein was expressed in soluble form in Escherichia coli BL21(DE3) and purified by Ni2+-immobilized metal affinity chromatography(IMAC). The serine residue of scFv in the active site was converted into selenocysteine(Sec) with the chemical modification method, thus, the human Se-scFv with GPX activity was obtained. The GPX activity of the Se-scFv protein was characterized. Compared with other Se-scFv, the new human Se-scFv showed similar efficiency for catalyzing the reduction of hydrogen peroxide by glutathione. It exhibited pH and temperature dependent catalytic activity and a typical ping-pong kinetic mechanism.