Path planning and obstacle avoidance are two challenging problems in the study of intelligent robots. In this paper, we develop a new method to alleviate these problems based on deep Q-learning with experience replay ...Path planning and obstacle avoidance are two challenging problems in the study of intelligent robots. In this paper, we develop a new method to alleviate these problems based on deep Q-learning with experience replay and heuristic knowledge. In this method, a neural network has been used to resolve the "curse of dimensionality" issue of the Q-table in reinforcement learning. When a robot is walking in an unknown environment, it collects experience data which is used for training a neural network;such a process is called experience replay.Heuristic knowledge helps the robot avoid blind exploration and provides more effective data for training the neural network. The simulation results show that in comparison with the existing methods, our method can converge to an optimal action strategy with less time and can explore a path in an unknown environment with fewer steps and larger average reward.展开更多
The survival rate of Castanopsis kawakamii from seed to seedling is relatively low,leading to difficulties in the regeneration of its natural forests.Forest gaps play a vital role in plant regeneration and biodiversit...The survival rate of Castanopsis kawakamii from seed to seedling is relatively low,leading to difficulties in the regeneration of its natural forests.Forest gaps play a vital role in plant regeneration and biodiversity maintenance in forest ecosystems.Unfortunately,our understanding of the effects of gap size and within-gap position on the seed germination and radicle growth of C.kawakamii is still limited.In particular,our knowledge on the relationship between gap size and environmental factors and their influence on seed germination and radicle growth is incomplete.In the present study,we studied the influences of forest gaps and within-gap position on seed regeneration on the germination and radicle growth of an endangered species C.kawakamii in a subtropical natural forest in China.We selected three large gaps(LG,gap size above 200 m^(2)),three medium gaps(MG,gap size 50-100 m^(2)),three small gaps(SG,gap size 30-50 m^(2)),and non-gap(NG),and planted the seeds of C.kawakamii in five positions within each gap.The results showed that(1)the influence of forest gaps on seed germination rate was,from highest to lowest,medium gaps(51%),non-gap(47%),small gaps(40%)and large gaps(17%),and the seed germination rate was the highest in all positions in medium gaps,with the exception of the east position.(2)Radicle length in forest gaps was,from highest to lowest,medium gaps,small gaps,large gaps and non-gap,and it was the highest in the east,south,west and north positions of medium gaps.(3)Canopy openness(gap size)and air temperature were the main factors influencing seed germination and radicle growth of C.kawakamii.We concluded that medium-sized gaps were the most suitable for seed germination and radicle growth of C.kawakamii,and they promote the regeneration of this endangered species in the investigated natural forest.展开更多
Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanosphe...Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.展开更多
Anion exchange membrane fuel cell(AEMFC)technology is attracting intensive attention,due to its great potential by using non-precious-metal catalysts(NPMCs)in the cathode and cheap bipolar plate materials in alkaline ...Anion exchange membrane fuel cell(AEMFC)technology is attracting intensive attention,due to its great potential by using non-precious-metal catalysts(NPMCs)in the cathode and cheap bipolar plate materials in alkaline media.However,in such case,the kinetics of hydrogen oxidation reaction(HOR)in the anode is two orders of magnitude sluggish than that of acidic electrolytes,which is recognized as the grand challenge in this field.Herein,we report the rationally designed Ni nanoparticles encapsulated by N-doped graphene layers(Ni@NG)using a facile pyrolysis strategy.Based on the density functional theory calculations and electrochemical performance analysis,it is witnessed that the rich Pyridinic-N within the graphene shell optimizes the binding energy of the intermediates,thus enabling the fundamentally enhanced activity for HOR with robust stability.As a proof of concept,the resultant Ni@NG sample as the anode with a low loading(1.8 mg cm^(-2))in AEMFCs delivers a high peak power density of 500 mW cm^(-2),outperforming all of those of NPMC-based analogs ever reported.展开更多
The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly re...The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly reduce motion resistance.However,the use of 3D structures limits the widespread application of self-propulsion based on Leidenfrost droplets in microelectromechanical system.To manipulate Leidenfrost droplets,it is necessary to create 2D or quasi-2D geometries.In this study,femtosecond laser is applied to fabricate a surface with periodic hydrophobicity gradient(SPHG),enabling directional self-propulsion of Leidenfrost droplets.Flow field analysis within the Leidenfrost droplets reveals that the vapor layer between the droplets and the hot surface can be modulated by the SPHG,resulting in directional propulsion of the inner gas.The viscous force between the gas and liquid then drives the droplet to move.展开更多
基金supported by the National Natural Science Foundation of China(61751210,61572441)。
文摘Path planning and obstacle avoidance are two challenging problems in the study of intelligent robots. In this paper, we develop a new method to alleviate these problems based on deep Q-learning with experience replay and heuristic knowledge. In this method, a neural network has been used to resolve the "curse of dimensionality" issue of the Q-table in reinforcement learning. When a robot is walking in an unknown environment, it collects experience data which is used for training a neural network;such a process is called experience replay.Heuristic knowledge helps the robot avoid blind exploration and provides more effective data for training the neural network. The simulation results show that in comparison with the existing methods, our method can converge to an optimal action strategy with less time and can explore a path in an unknown environment with fewer steps and larger average reward.
基金funded by the National Natural Science Foundation of China,grant numbers 31700550 and 31770678the Nature Science Fund of the Fujian Province Science and Technology of China,grant number 2019J01367+1 种基金the Science and Technology Promotion of Project Forestry Bureau of the Fujian Province,grant number 2018TG14-2the Innovation and Technology Fund of Fujian Agriculture and Forestry University,grant number CXZX2018125.
文摘The survival rate of Castanopsis kawakamii from seed to seedling is relatively low,leading to difficulties in the regeneration of its natural forests.Forest gaps play a vital role in plant regeneration and biodiversity maintenance in forest ecosystems.Unfortunately,our understanding of the effects of gap size and within-gap position on the seed germination and radicle growth of C.kawakamii is still limited.In particular,our knowledge on the relationship between gap size and environmental factors and their influence on seed germination and radicle growth is incomplete.In the present study,we studied the influences of forest gaps and within-gap position on seed regeneration on the germination and radicle growth of an endangered species C.kawakamii in a subtropical natural forest in China.We selected three large gaps(LG,gap size above 200 m^(2)),three medium gaps(MG,gap size 50-100 m^(2)),three small gaps(SG,gap size 30-50 m^(2)),and non-gap(NG),and planted the seeds of C.kawakamii in five positions within each gap.The results showed that(1)the influence of forest gaps on seed germination rate was,from highest to lowest,medium gaps(51%),non-gap(47%),small gaps(40%)and large gaps(17%),and the seed germination rate was the highest in all positions in medium gaps,with the exception of the east position.(2)Radicle length in forest gaps was,from highest to lowest,medium gaps,small gaps,large gaps and non-gap,and it was the highest in the east,south,west and north positions of medium gaps.(3)Canopy openness(gap size)and air temperature were the main factors influencing seed germination and radicle growth of C.kawakamii.We concluded that medium-sized gaps were the most suitable for seed germination and radicle growth of C.kawakamii,and they promote the regeneration of this endangered species in the investigated natural forest.
基金supported by National Natural Science Foundation of China(NSFC,Grant No.51972178)Natural Science Foundation of Ningbo(2022J139)Ningbo Yongjiang Talent Introduction Programme(2022A-227-G)
文摘Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.
基金financially funded by the Natural Science Foundation of Ningbo(No.2022J139)the Ningbo Yongjiang Talent Introduction Programme(No.2022A-227-G)+5 种基金the National Natural Science Foundation of China(No.51972178)the financial support from Scientific and Technological Bases and Talents of Guangxi(Guike AD21075051)the National Natural Science Foundation of China(12174075)the special fund for“Guangxi Bagui Scholars”support by ERC-CZ program(project LL2101)from the Ministry of Education Youth and Sports(MEYS)by the project Advanced Functional Nanorobots(reg.No.CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR)
文摘Anion exchange membrane fuel cell(AEMFC)technology is attracting intensive attention,due to its great potential by using non-precious-metal catalysts(NPMCs)in the cathode and cheap bipolar plate materials in alkaline media.However,in such case,the kinetics of hydrogen oxidation reaction(HOR)in the anode is two orders of magnitude sluggish than that of acidic electrolytes,which is recognized as the grand challenge in this field.Herein,we report the rationally designed Ni nanoparticles encapsulated by N-doped graphene layers(Ni@NG)using a facile pyrolysis strategy.Based on the density functional theory calculations and electrochemical performance analysis,it is witnessed that the rich Pyridinic-N within the graphene shell optimizes the binding energy of the intermediates,thus enabling the fundamentally enhanced activity for HOR with robust stability.As a proof of concept,the resultant Ni@NG sample as the anode with a low loading(1.8 mg cm^(-2))in AEMFCs delivers a high peak power density of 500 mW cm^(-2),outperforming all of those of NPMC-based analogs ever reported.
基金supported by the Beijing Municipal Natural Science Foundation(JQ20015)National Key Research and Development Program of China(No.2022YFB4601300)+3 种基金the National Science Fund for Distinguished Young Scholars(No.52325505)the National Natural Science Foundation of China(NSFC)(No.52075041)the Joint Funds of the National Natural Science Foundation of China(Grant No.U2037205)the Open Project Program of Wuhan National Laboratory for Optoelectronics(No2021WNLOKF016)。
文摘The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly reduce motion resistance.However,the use of 3D structures limits the widespread application of self-propulsion based on Leidenfrost droplets in microelectromechanical system.To manipulate Leidenfrost droplets,it is necessary to create 2D or quasi-2D geometries.In this study,femtosecond laser is applied to fabricate a surface with periodic hydrophobicity gradient(SPHG),enabling directional self-propulsion of Leidenfrost droplets.Flow field analysis within the Leidenfrost droplets reveals that the vapor layer between the droplets and the hot surface can be modulated by the SPHG,resulting in directional propulsion of the inner gas.The viscous force between the gas and liquid then drives the droplet to move.