EPSPS is a key gene in the shikimic acid synthesis pathway that has been widely used in breeding crops with herbicide resistance.However,its role in regulating cell elongation is poorly understood.Through the overexpr...EPSPS is a key gene in the shikimic acid synthesis pathway that has been widely used in breeding crops with herbicide resistance.However,its role in regulating cell elongation is poorly understood.Through the overexpression of EPSPS genes,we generated lines resistant to glyphosate that exhibit an unexpected dwarf phenotype.A representative line,DHR1,exhibits a stable dwarf phenotype throughout its entire growth period.Except for plant height,the other agronomic traits of DHR1 are similar to its transgenic explants ZM24.Paraffin section observations showed that DHR1 internodes are shortened due to reduced elongation and division of the internode cells.Exogenous hormones confirmed that DHR1 is not a classical brassinolide(BR)-or gibberellin(GA)-related dwarfing mutant.Hybridization analysis and fine mapping confirmed that the EPSPS gene is the causal gene for dwarfism,and the phenotype can be inherited in different genotypes.Transcriptome and metabolome analyses showed that genes associated with the phenylpropanoid synthesis pathway are enriched in DHR1 compared with ZM24.Flavonoid metabolites are enriched in DHR1,whereas lignin metabolites are reduced.The enhancement of flavonoids likely results in differential expression of auxin signal pathway genes and alters the auxin response,subsequently affecting cell elongation.This study provides a new strategy for generating dwarfs and will accelerate advancements in light simplification in the cultivation and mechanized harvesting of cotton.展开更多
超硬磨具激光增材制造过程中,金刚石极易受到激光直接辐照和高温熔池的影响,出现石墨化等热损伤现象.选取典型的金刚石磨具用金属结合剂CuSn10粉末,采用粉末床熔融(Powder Bed Fusion-laser Beam,PBF-LB)技术制备CuSn10-金刚石复合材料...超硬磨具激光增材制造过程中,金刚石极易受到激光直接辐照和高温熔池的影响,出现石墨化等热损伤现象.选取典型的金刚石磨具用金属结合剂CuSn10粉末,采用粉末床熔融(Powder Bed Fusion-laser Beam,PBF-LB)技术制备CuSn10-金刚石复合材料;围绕高能激光束和高温熔池两个影响增材制造过程中金刚石颗粒性能的关键因素,以单颗金刚石颗粒为研究对象,通过有限元模拟分析构建金刚石颗粒的温度场模型,反映了金刚石颗粒在PBF-LB中的热演化过程;阐明了PBF-LB过程金刚石的热损伤机制,发现金刚石发生石墨化转变并不是由激光的直接辐照造成的,而是由高温熔池的热影响导致,CuSn10-金刚石复合材料在PBF-LB过程中石墨化的临界温度为1491.6℃.建立了PBF-LB工艺-金刚石颗粒温度-石墨化程度-摩擦磨损性能的定量关系,发现随着金刚石颗粒温度的增加,其石墨化程度增加,严重损害了复合材料的摩擦磨损性能.展开更多
A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are sti...A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency.展开更多
Probiotics exert beneficial effects on the host.This study aimed to investigate whether maternally ingested Lacticaseibacillus rhamnosus Probio-M9 during pregnancy could access and colonize the infant gut.This study r...Probiotics exert beneficial effects on the host.This study aimed to investigate whether maternally ingested Lacticaseibacillus rhamnosus Probio-M9 during pregnancy could access and colonize the infant gut.This study recruited one pregnant woman,who ingested Probio-M9 daily from 35 weeks of gestation to delivery.Feces of the mother-infant pair were regularly collected from one month before delivery to 6 months of infant's age for metagenomic sequencing.Probio-M9 genomes were mappable to all infant fecal samples,suggesting the ingested probiotics could be vertically transmitted from mother to infant.Infant-or mother-specific differential metabolic pathways were found between the maternal and infant's gut microbiome,implicating apparent differences in the intestinal metagenomic potential/function between the mother and the infant.In conclusion,maternal ingestion of Probio-M9 during the final weeks of gestation could deliver to the infant gut.The findings provided novel insights into shaping infant's gut microbiota.展开更多
基金supported by funding from the Natural Science Foundation of Henan Province,China(232300421010)the Key Research and Development Project of Henan Province,China(231111110400)+4 种基金the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City,China(320LH045)the Hainan Yazhou Bay Seed Laboratory,China(B21HJ0215)the Fundamental Research Funds of State Key Laboratory of Cotton Biology,China(2021CBE03)the Central Public-interest Scientific Institution Basal Research Fund,China(Y2023XK16)the Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIPIVFCAAS to F.G.L)。
文摘EPSPS is a key gene in the shikimic acid synthesis pathway that has been widely used in breeding crops with herbicide resistance.However,its role in regulating cell elongation is poorly understood.Through the overexpression of EPSPS genes,we generated lines resistant to glyphosate that exhibit an unexpected dwarf phenotype.A representative line,DHR1,exhibits a stable dwarf phenotype throughout its entire growth period.Except for plant height,the other agronomic traits of DHR1 are similar to its transgenic explants ZM24.Paraffin section observations showed that DHR1 internodes are shortened due to reduced elongation and division of the internode cells.Exogenous hormones confirmed that DHR1 is not a classical brassinolide(BR)-or gibberellin(GA)-related dwarfing mutant.Hybridization analysis and fine mapping confirmed that the EPSPS gene is the causal gene for dwarfism,and the phenotype can be inherited in different genotypes.Transcriptome and metabolome analyses showed that genes associated with the phenylpropanoid synthesis pathway are enriched in DHR1 compared with ZM24.Flavonoid metabolites are enriched in DHR1,whereas lignin metabolites are reduced.The enhancement of flavonoids likely results in differential expression of auxin signal pathway genes and alters the auxin response,subsequently affecting cell elongation.This study provides a new strategy for generating dwarfs and will accelerate advancements in light simplification in the cultivation and mechanized harvesting of cotton.
文摘超硬磨具激光增材制造过程中,金刚石极易受到激光直接辐照和高温熔池的影响,出现石墨化等热损伤现象.选取典型的金刚石磨具用金属结合剂CuSn10粉末,采用粉末床熔融(Powder Bed Fusion-laser Beam,PBF-LB)技术制备CuSn10-金刚石复合材料;围绕高能激光束和高温熔池两个影响增材制造过程中金刚石颗粒性能的关键因素,以单颗金刚石颗粒为研究对象,通过有限元模拟分析构建金刚石颗粒的温度场模型,反映了金刚石颗粒在PBF-LB中的热演化过程;阐明了PBF-LB过程金刚石的热损伤机制,发现金刚石发生石墨化转变并不是由激光的直接辐照造成的,而是由高温熔池的热影响导致,CuSn10-金刚石复合材料在PBF-LB过程中石墨化的临界温度为1491.6℃.建立了PBF-LB工艺-金刚石颗粒温度-石墨化程度-摩擦磨损性能的定量关系,发现随着金刚石颗粒温度的增加,其石墨化程度增加,严重损害了复合材料的摩擦磨损性能.
基金supported by the National Natural Science Foundation of China(31421092)the Central Publicinterest Scientific Institution Basal Research Fund,China(1610232023023)。
文摘A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency.
基金supported by Science and Technology Major Projects of Inner Mongolia Autonomous Region(2021ZD0014)。
文摘Probiotics exert beneficial effects on the host.This study aimed to investigate whether maternally ingested Lacticaseibacillus rhamnosus Probio-M9 during pregnancy could access and colonize the infant gut.This study recruited one pregnant woman,who ingested Probio-M9 daily from 35 weeks of gestation to delivery.Feces of the mother-infant pair were regularly collected from one month before delivery to 6 months of infant's age for metagenomic sequencing.Probio-M9 genomes were mappable to all infant fecal samples,suggesting the ingested probiotics could be vertically transmitted from mother to infant.Infant-or mother-specific differential metabolic pathways were found between the maternal and infant's gut microbiome,implicating apparent differences in the intestinal metagenomic potential/function between the mother and the infant.In conclusion,maternal ingestion of Probio-M9 during the final weeks of gestation could deliver to the infant gut.The findings provided novel insights into shaping infant's gut microbiota.