期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Motor neuron-specific RhoA knockout delays degeneration and promotes regeneration of dendrites in spinal ventral horn after brachial plexus injury 被引量:1
1
作者 Mi Li Jiawei Xu +10 位作者 Ying Zou Jialing Lu Aiyue Ou Xinrui Ma Jiaqi Zhang Yizhou Xu lanya fu Jingmin Liu Xianghai Wang Libing Zhou Jiasong Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2757-2761,共5页
Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be... Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be re-expanded when reinnervation is allowed.RhoA is a target that regulates the cytoskeleton and promotes neuronal survival and axon regeneration.However,the role of RhoA in dendrite degeneration and regeneration is unknown.In this study,we explored the potential role of RhoA in dendrites.A line of motor neuronal conditional knockout mice was developed by crossbreeding HB9~(Cre+)mice with RhoA~(flox/flox)mice.We established two models for assaying dendrite degeneration and regeneration,in which the brachial plexus was transection or crush injured,respectively.We found that at 28 days after brachial plexus transection,the density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice were slightly decreased compared with that in Cre mice.Dendrites underwent degeneration at 7 and 14 days after brachial plexus transection and recovered at 28–56 days.The density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice recovered compared with results in Cre mice.These findings suggest that RhoA knockout in motor neurons attenuates dendrite degeneration and promotes dendrite regeneration after peripheral nerve injury. 展开更多
关键词 brachial plexus conditional knockout DEGENERATION DENDRITES motor neuron peripheral nerve injury REGENERATION RHOA spinal cord ventral horn
下载PDF
Role of microtubule dynamics in Wallerian degeneration and nerve regeneration after peripheral nerve injury 被引量:1
2
作者 Jingmin Liu Lixia Li +14 位作者 Ying Zou lanya fu Xinrui Ma Haowen Zhang Yizhou Xu Jiawei Xu Jiaqi Zhang Mi Li Xiaofang Hu Zhenlin Li Xianghai Wang Hao Sun Hui Zheng Lixin Zhu Jiasong Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第3期673-681,共9页
Wallerian degeneration,the progressive disintegration of distal axons and myelin that occurs after peripheral nerve injury,is essential for creating a permissive microenvironment for nerve regeneration,and involves cy... Wallerian degeneration,the progressive disintegration of distal axons and myelin that occurs after peripheral nerve injury,is essential for creating a permissive microenvironment for nerve regeneration,and involves cytoskeletal reconstruction.However,it is unclear whether microtubule dynamics play a role in this process.To address this,we treated cultured sciatic nerve explants,an in vitro model of Wallerian degeneration,with the microtubule-targeting agents paclitaxel and nocodazole.We found that paclitaxel-induced microtubule stabilization promoted axon and myelin degeneration and Schwann cell dedifferentiation,whereas nocodazole-induced microtubule destabilization inhibited these processes.Evaluation of an in vivo model of peripheral nerve injury showed that treatment with paclitaxel or nocodazole accelerated or attenuated axonal regeneration,as well as functional recovery of nerve conduction and target muscle and motor behavior,respectively.These results suggest that microtubule dynamics participate in peripheral nerve regeneration after injury by affecting Wallerian degeneration.This study was approved by the Animal Care and Use Committee of Southern Medical University,China(approval No.SMUL2015081) on October 15,2015. 展开更多
关键词 AXON DEMYELINATION microtubule dynamics nerve regeneration NOCODAZOLE PACLITAXEL peripheral nerve injury Schwann cell Wallerian degeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部