Foamed zinc was prepared by infiltration casting process.The mechanical properties and corrosion resistance of the samples were studied,and the feasibility of the foamed zinc as a bone implant material was discussed.A...Foamed zinc was prepared by infiltration casting process.The mechanical properties and corrosion resistance of the samples were studied,and the feasibility of the foamed zinc as a bone implant material was discussed.All the compression stress-strain curves of open-cell zinc foams with various cell size(1-4 mm)and porosity(55%-67%)show three stages:elastic stage,plastic stage,and densification stage.The compression strength increases with decreasing density.The smooth stress-strain response indicates a progressively deformation of open-cell zinc foam.In addition,the cell wall or edge bending and fracture are the dominated mechanisms for failure of open cell zinc foam.The immersion test for determining the corrosion rate of open cell zinc foam was conducted in simulated body fluid.It was found that zinc foam with a small cell size and high porosity showed a higher corrosion rate.In addition,open-cell zinc foams can effectively induce Ca-P deposition in immersion tests,showing good bioactivity.Therefore,the open cell zinc foam prepared in this experiment has a good potential application as a human bone substitute material.展开更多
The low ion transport is a major obstacle for low-temperature(LT)sodium-ion batteries(SIBs).Herein,a core-shell structure of bismuth(Bi)nanospheres coated with carbon(Bi@C)is constructed by utilizing a novel Bi-based ...The low ion transport is a major obstacle for low-temperature(LT)sodium-ion batteries(SIBs).Herein,a core-shell structure of bismuth(Bi)nanospheres coated with carbon(Bi@C)is constructed by utilizing a novel Bi-based complex(1,4,5,8-naphthalenetetracarboxylic dianhydride as the ligand)as the precursor,which provides an effective template to fabricate Bi-based anodes.At-40℃,the Bi@C anode achieves a high capacity,which is equivalent to 96%of that at 25℃,benefitting from the core-shell nanostructured engineering and Na^(+)-ether-solvent cointercalation process.The special Na+-diglyme cointercalation behavior may effectively reduce the activation energy and accelerate the Na+diffusion kinetics,enabling the excellent low-temperature performance of the Bi@C electrode.As expected,the fabricated Na_(3)V_(2)(PO_(4))_(3)//Bi@C full-cell delivers impressive rechargeability in the ether-based electrolyte at-40℃.Density functional theory calculations and electrochemical tests also reveal the fast reaction kinetic mechanism at LT,thanks to a much lower diffusion energy barrier(167 meV)and a lower reaction activation energy(32.2 kJ mol^(-1))of Bi@C anode in comparison with that of bulk Bi.This work provides a rational design of Bi-based electrodes for rechargeable SIBs under extreme conditions.展开更多
Captured by the environmental and economic value,the recycling of spent lithium iron phosphate(LFP)batteries has attracted numerous attentions.However,hydrometallurgical method still suffers from complex process,and h...Captured by the environmental and economic value,the recycling of spent lithium iron phosphate(LFP)batteries has attracted numerous attentions.However,hydrometallurgical method still suffers from complex process,and hydrothermal method is limited by morphology control,ascribed to the strong polarity of water.Herein,supported by ethanol as crystal surface modifier,the regular(010)orientation and short b-axis are effectively tailored for regenerated LFP.As Li-storage cathode,the capacities of as-optimized LFP could reach up to 157.07 mA h g^(-1)at 1 C,and the stable capacity of 150.50 mA h g^(-1)could be remained with retention of 93.48%after 400 cycles at 1 C.Even at 10 C,their capacity could be still kept about 119.3 m A h g^(-1).Assisted by the detail analysis of adsorption energy,the clear growth mechanism is proposed,the lowest adsorbing energy(-4.66 eV)of ethanol on(010)crystal plane renders the ordered growth along(010)crystal plane.Given this,the work is expected to shed light on the tailoring mechanism of internal plane about regenerated materials,whilst providing effective strategies for highperformance regenerated LFP.展开更多
Solving the problems of low electrical conductivity and poor cycling durability in transition metal oxidesbased anode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs)has already turned into an u...Solving the problems of low electrical conductivity and poor cycling durability in transition metal oxidesbased anode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs)has already turned into an urgent requirement.In this paper,we successfully synthesized Co_(2)VO_(4)/Co compounds with Co-VMOF(metal-organic framework)as a sacrificial template and investigated their electrochemical mechanism in order to improve the electrochemical properties of LIBs and SIBs.The optimized heaping configuration and the existence of metallic Co catalyzed the formation of radical ions,thereby facilitating higher conductivity,shortening Li+and Na+transport paths,and providing more active sites.Co_(2)VO_(4)/Co constructed with 2-methylimidazole as a ligand showed a discharge capacity of 1605.1 mA h g^(-1)after 300 cycles at 0.1 A g^(-1)in LIB and 677.2 mA h g^(-1)in SIB.Density functional theory(DFT)calculation emphasizes the crucial role of Co_(2)VO_(4)/Co in enhancing electrode conductivity,decreasing the migratory energy barrier,and thereby strengthening electrochemical properties.This heterostructure building technique may pave the way for the development of high-performance LIBs and SIBs.Furthermore,the problem of the low first-loop coulombic efficiency faced by transition metal oxides is improved.展开更多
A new kind of step-flow growth mode is proposed,which adopts sidewall as step source on patterned GaN substrate.The terrace width of steps originated from the sidewall was found to change with the growth temperature a...A new kind of step-flow growth mode is proposed,which adopts sidewall as step source on patterned GaN substrate.The terrace width of steps originated from the sidewall was found to change with the growth temperature and ammonia flux.The growth mechanism is explained and simulated based on step motion model.This work helps better understand the behaviors of step advancement and puts forward a method of precisely modulating atomic steps.展开更多
The scope and scale of rock engineering activities have witnessed continuous expansion,which makes the geological conditions of rock engineering increasingly complex,and there are more and more types of disasters occu...The scope and scale of rock engineering activities have witnessed continuous expansion,which makes the geological conditions of rock engineering increasingly complex,and there are more and more types of disasters occurring during the construction and operation processes.The uncertainty of engineering geological information and the unclear nature of rock mass failure and disaster mechanisms pose increasingly prominent challenges to the study of rock mechanics and engineering problems.The artificial intelligence technology develops driven by data and knowledge,especially the proposal of digital-twin technology and metaverse ideas.This has injected new innovative impetus for the development of rock mechanics and engineering intelligence,where data and knowledge have been greatly enriched and updated in recent years.This article proposes the construction idea of a rock mechanics and engineering artificial intelligence system based on the metaverse,including intelligent recognition of three-dimensional(3D)geological structures,intelligent recognition of 3D geostress,intelligent recognition of rock mechanical behavior,intelligent evaluation,monitoring and early warning of rock engineering disaster,intelligent design of rock engineering,and intelligent construction of rock engineering.Two typical engineering applications are used as case studies to illustrate the integrated method of applying this system to solve engineering problems with multiple tasks.展开更多
In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing...In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing is the most widely used technique in the field of AM, due to low operating and material costs. However, the materials commonly used for this technology are virgin thermoplastics. It is worth noting a considerable amount of waste exists due to failed print and disposable prototypes. In this regard, using green and sustainable materials is essential to limit the impact on the environment. The recycled, bio-based, and blended recycled materials are therefore a potential approach for 3D printing. In contrast, the lack of understanding of the mechanism of interlayer adhesion and the degradation of materials for FDM printing has posed a major challenge for these green materials. This paper provides an overview of the FDM technique and material requirements for 3D printing filaments. The main objective is to highlight the advantages and disadvantages of using recycled, bio-based, and blended materials based on thermoplastics for 3D printing filaments. In this work, solutions to improve the mechanical properties of 3D printing parts before, during, and after the printing process are pointed out. This paper provides an overview on choosing which materials and solutions depend on the specific application purposes. Moreover, research gaps and opportunities are mentioned in the discussion and conclusions sections of this study.展开更多
The purpose of this work is to evaluate the use of a two-dimensional (2D) planar ion chamber array to characterize leakage radiation from the head of the linear accelerator. Ion chamber arrays provide a benefit over a...The purpose of this work is to evaluate the use of a two-dimensional (2D) planar ion chamber array to characterize leakage radiation from the head of the linear accelerator. Ion chamber arrays provide a benefit over a singular ion chamber measurement as they allow for the measurement of a larger area in order to isolate the point of maximum leakage dose and the small size of each individual ion chamber minimizes volume-averaging effects. A Varian Truebeam<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><sup><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">®</span></span></sup></span> undergoing acceptance testing was used for all measurements. The gantry was wrapped in Portal Pack for Localization (PPL) radiographic film in order to isolate the location of maximum leakage. A calibration curve was developed and used to determine dose-to-film. An Ion Chamber Profiler (IC Profiler<sup><span style="font-size:6.5pt;font-family:;" "=""><span style="white-space:nowrap;">™</span></span></sup>) manufactured by Sun Nuclear Corporation was used to confirm measurements by the PPL film. All measurements were normalized to leakage at 100 cm from the target relative to the central axis. Three points were investigated with the IC Profiler, including the top of the gantry, the Varian logo, and the side of the gantry. For the three locations, respectively, the PPL film and the IC profiler were measured 0.142% and 0.131%, 0.036% and 0.030%, and 0.014% and 0.019%. The good agreement between the PPL film and the IC Profiler provides confidence in the use of a more efficient and accurate ion chamber array for head leakage measurements.展开更多
To analyze and predict the mechanical behaviors of deep hard rocks,some key issues concerning rock fracturing mechanics for deep hard rock excavations are discussed.First,a series of apparatuses and methods have been ...To analyze and predict the mechanical behaviors of deep hard rocks,some key issues concerning rock fracturing mechanics for deep hard rock excavations are discussed.First,a series of apparatuses and methods have been developed to test the mechanical properties and fracturing behaviors of hard rocks under high true triaxial stress paths.Evolution mechanisms of stress-induced disasters in deep hard rock excavations,such as spalling,deep cracking,massive roof collapse,large deformation and rockbursts,have been recognized.The analytical theory for the fracturing process of hard rock masses,including the three-dimensional failure criterion,stress-induced mechanical model,fracturing degree index,energy release index and numerical method,has been established.The cracking-restraint method is developed for mitigating or controlling rock spalling,deep cracking and massive collapse of deep hard rocks.An energy-controlled method is also proposed for the prevention of rockbursts.Finally,two typical cases are used to illustrate the application of the proposed methodology in the Baihetan caverns and Bayu tunnels of China.展开更多
A new amphoteric membrane was prepared by blending long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)(S-L-PPO)and polybenzimidazole(PBI)for vanadium redox flow battery(VRFB)application.An acid-base pair...A new amphoteric membrane was prepared by blending long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)(S-L-PPO)and polybenzimidazole(PBI)for vanadium redox flow battery(VRFB)application.An acid-base pair structure formed between the imidazole of PBI and sulfonic acid of S-L-PPO resulted in lowered swelling ratio.It favors to reduce the vanadium permeation.While,the increased sulfonic acid concentration ensured that proton conductivity was still at a high level.As a result,a better balance between the vanadium ion permeation(6.1×10^-9 cm^2·s^-1)and proton conductivity(50.8 m S·cm^-1)in the S-L-PPO/PBI-10%membrane was achieved.The VRFB performance with S-L-PPO/PBI-10%membrane exhibited an EE of 82.7%,which was higher than those of pristine S-L-PPO(81.8%)and Nafion 212(78.0%)at 120 m A·cm^-2.In addition,the S-LPPO/PBI-10%membrane had a much longer self-discharge duration time(142 h)than that of Nafion 212(23 h).展开更多
The development of high-efficiency and low-cost catalysts is very crucial for the MeerweinPonndorf-Verley (MPV) reduction of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-dihydroxymethylfuran (DHMF). In this ...The development of high-efficiency and low-cost catalysts is very crucial for the MeerweinPonndorf-Verley (MPV) reduction of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-dihydroxymethylfuran (DHMF). In this work, an amorphous and mesoporous zirconium phosphonate catalyst (Zr-DTMP), which is a zirconium-containing organic-inorganic nanohybrid, was successfully designed and synthesized by the simple assembly of zirconium tetrachloride (ZrCl4) and diethylene triaminepenta(methylene phosphonic acid)(DTMP). Satisfactorily, when Zr-DTMP was employed for the MPV reduction of HMF in the presence of 2-butanol (secBuOH), DHMF yield could be achieved as 96.5% in 3 h under a relatively mild reaction temperature of 140℃. Systematic investigations indicated that this high catalytic activity should be mainly due to the cooperative role of enhancive Lewis acid site (Zr4+) and Lewis base site (O2-) in activating the carbonyl group of HMF and dissociating the hydroxyl group of secBuOH, respectively. Additionally, Zr-DTMP showed excellent catalytic stability, when it was successively used 5 recycles, its surface characteristics and textural properties still remained almost unchanged, and so, the catalytic activity was not obviously affected. More interestingly, Zr-DTMP could also be applied for the selective reduction of other biomass-derived carbonyl compounds, such as 5-methylfurfural (MF), furfural (FF), levulinic acid (LA), ethyl levulinate (EL) and cyclohexanone (CHN), into the corresponding products with high yields, which is beneficial to the effective synthesis of various valuable bio-based chemicals.展开更多
基金Key Research and Development Program of Liaoning Province(2019JH2/10100008)the Plan for Innovative Talents in Liaoning Higher Education Institutions(LR2018011)the Plan for Young and Middle-aged Science and Technology Innovation Talent of Shenyang(RC170204).
文摘Foamed zinc was prepared by infiltration casting process.The mechanical properties and corrosion resistance of the samples were studied,and the feasibility of the foamed zinc as a bone implant material was discussed.All the compression stress-strain curves of open-cell zinc foams with various cell size(1-4 mm)and porosity(55%-67%)show three stages:elastic stage,plastic stage,and densification stage.The compression strength increases with decreasing density.The smooth stress-strain response indicates a progressively deformation of open-cell zinc foam.In addition,the cell wall or edge bending and fracture are the dominated mechanisms for failure of open cell zinc foam.The immersion test for determining the corrosion rate of open cell zinc foam was conducted in simulated body fluid.It was found that zinc foam with a small cell size and high porosity showed a higher corrosion rate.In addition,open-cell zinc foams can effectively induce Ca-P deposition in immersion tests,showing good bioactivity.Therefore,the open cell zinc foam prepared in this experiment has a good potential application as a human bone substitute material.
基金This work was financially supported by the National Natural Science Foundation of China(21978298,21606065)Natural Science Foundation of Anhui Province(2208085ME108,1708085QE98)+4 种基金Anhui Provincial Key Research and Development Program(2023z04020004)University Natural Science Research Project of Anhui Province(2022AH051792,2022AH051788,2022AH010096)the University Synergy Innovation Program of Anhui Province(GXXT-2023-024)Talent Scientific Research Foundation of Hefei University(23RC29)Key R&D Program of Zhejiang Province(2021C04019).
文摘The low ion transport is a major obstacle for low-temperature(LT)sodium-ion batteries(SIBs).Herein,a core-shell structure of bismuth(Bi)nanospheres coated with carbon(Bi@C)is constructed by utilizing a novel Bi-based complex(1,4,5,8-naphthalenetetracarboxylic dianhydride as the ligand)as the precursor,which provides an effective template to fabricate Bi-based anodes.At-40℃,the Bi@C anode achieves a high capacity,which is equivalent to 96%of that at 25℃,benefitting from the core-shell nanostructured engineering and Na^(+)-ether-solvent cointercalation process.The special Na+-diglyme cointercalation behavior may effectively reduce the activation energy and accelerate the Na+diffusion kinetics,enabling the excellent low-temperature performance of the Bi@C electrode.As expected,the fabricated Na_(3)V_(2)(PO_(4))_(3)//Bi@C full-cell delivers impressive rechargeability in the ether-based electrolyte at-40℃.Density functional theory calculations and electrochemical tests also reveal the fast reaction kinetic mechanism at LT,thanks to a much lower diffusion energy barrier(167 meV)and a lower reaction activation energy(32.2 kJ mol^(-1))of Bi@C anode in comparison with that of bulk Bi.This work provides a rational design of Bi-based electrodes for rechargeable SIBs under extreme conditions.
基金supported by the National Natural Science Foundation of China(52374290,52374288 and 52204298)the Innovation-driven Program of Central South University(2023CXQD009)+3 种基金the Hunan Provincial Innovation Foundation for Postgraduate(2024ZZTS0059)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2022QNRC001)the National Key Research and Development Program of China(2022YFC3900805-4/7)the Hunan Provincial Education Office Foundation of China(21B0147)。
文摘Captured by the environmental and economic value,the recycling of spent lithium iron phosphate(LFP)batteries has attracted numerous attentions.However,hydrometallurgical method still suffers from complex process,and hydrothermal method is limited by morphology control,ascribed to the strong polarity of water.Herein,supported by ethanol as crystal surface modifier,the regular(010)orientation and short b-axis are effectively tailored for regenerated LFP.As Li-storage cathode,the capacities of as-optimized LFP could reach up to 157.07 mA h g^(-1)at 1 C,and the stable capacity of 150.50 mA h g^(-1)could be remained with retention of 93.48%after 400 cycles at 1 C.Even at 10 C,their capacity could be still kept about 119.3 m A h g^(-1).Assisted by the detail analysis of adsorption energy,the clear growth mechanism is proposed,the lowest adsorbing energy(-4.66 eV)of ethanol on(010)crystal plane renders the ordered growth along(010)crystal plane.Given this,the work is expected to shed light on the tailoring mechanism of internal plane about regenerated materials,whilst providing effective strategies for highperformance regenerated LFP.
基金financially supported by the Open Fund of Energy and Materials Chemistry Joint Laboratory of SCNU and TINCI,China (SCNU-TINCI-202207)。
文摘Solving the problems of low electrical conductivity and poor cycling durability in transition metal oxidesbased anode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs)has already turned into an urgent requirement.In this paper,we successfully synthesized Co_(2)VO_(4)/Co compounds with Co-VMOF(metal-organic framework)as a sacrificial template and investigated their electrochemical mechanism in order to improve the electrochemical properties of LIBs and SIBs.The optimized heaping configuration and the existence of metallic Co catalyzed the formation of radical ions,thereby facilitating higher conductivity,shortening Li+and Na+transport paths,and providing more active sites.Co_(2)VO_(4)/Co constructed with 2-methylimidazole as a ligand showed a discharge capacity of 1605.1 mA h g^(-1)after 300 cycles at 0.1 A g^(-1)in LIB and 677.2 mA h g^(-1)in SIB.Density functional theory(DFT)calculation emphasizes the crucial role of Co_(2)VO_(4)/Co in enhancing electrode conductivity,decreasing the migratory energy barrier,and thereby strengthening electrochemical properties.This heterostructure building technique may pave the way for the development of high-performance LIBs and SIBs.Furthermore,the problem of the low first-loop coulombic efficiency faced by transition metal oxides is improved.
基金This work was supported by the National Key Research and Development Program of China(2022YFB2802801)the National Natural Science Foundation of China(61834008,U21A20493)+1 种基金the Key Research and Development Program of Jiangsu Province(BE2020004,BE2021008-1)the Suzhou Key Laboratory of New-type Laser Display Technology(SZS2022007).
文摘A new kind of step-flow growth mode is proposed,which adopts sidewall as step source on patterned GaN substrate.The terrace width of steps originated from the sidewall was found to change with the growth temperature and ammonia flux.The growth mechanism is explained and simulated based on step motion model.This work helps better understand the behaviors of step advancement and puts forward a method of precisely modulating atomic steps.
基金funded by the National Natural Science Foundation of China(Grant Nos.51839003 and 41827806).
文摘The scope and scale of rock engineering activities have witnessed continuous expansion,which makes the geological conditions of rock engineering increasingly complex,and there are more and more types of disasters occurring during the construction and operation processes.The uncertainty of engineering geological information and the unclear nature of rock mass failure and disaster mechanisms pose increasingly prominent challenges to the study of rock mechanics and engineering problems.The artificial intelligence technology develops driven by data and knowledge,especially the proposal of digital-twin technology and metaverse ideas.This has injected new innovative impetus for the development of rock mechanics and engineering intelligence,where data and knowledge have been greatly enriched and updated in recent years.This article proposes the construction idea of a rock mechanics and engineering artificial intelligence system based on the metaverse,including intelligent recognition of three-dimensional(3D)geological structures,intelligent recognition of 3D geostress,intelligent recognition of rock mechanical behavior,intelligent evaluation,monitoring and early warning of rock engineering disaster,intelligent design of rock engineering,and intelligent construction of rock engineering.Two typical engineering applications are used as case studies to illustrate the integrated method of applying this system to solve engineering problems with multiple tasks.
文摘In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing is the most widely used technique in the field of AM, due to low operating and material costs. However, the materials commonly used for this technology are virgin thermoplastics. It is worth noting a considerable amount of waste exists due to failed print and disposable prototypes. In this regard, using green and sustainable materials is essential to limit the impact on the environment. The recycled, bio-based, and blended recycled materials are therefore a potential approach for 3D printing. In contrast, the lack of understanding of the mechanism of interlayer adhesion and the degradation of materials for FDM printing has posed a major challenge for these green materials. This paper provides an overview of the FDM technique and material requirements for 3D printing filaments. The main objective is to highlight the advantages and disadvantages of using recycled, bio-based, and blended materials based on thermoplastics for 3D printing filaments. In this work, solutions to improve the mechanical properties of 3D printing parts before, during, and after the printing process are pointed out. This paper provides an overview on choosing which materials and solutions depend on the specific application purposes. Moreover, research gaps and opportunities are mentioned in the discussion and conclusions sections of this study.
文摘The purpose of this work is to evaluate the use of a two-dimensional (2D) planar ion chamber array to characterize leakage radiation from the head of the linear accelerator. Ion chamber arrays provide a benefit over a singular ion chamber measurement as they allow for the measurement of a larger area in order to isolate the point of maximum leakage dose and the small size of each individual ion chamber minimizes volume-averaging effects. A Varian Truebeam<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><sup><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">®</span></span></sup></span> undergoing acceptance testing was used for all measurements. The gantry was wrapped in Portal Pack for Localization (PPL) radiographic film in order to isolate the location of maximum leakage. A calibration curve was developed and used to determine dose-to-film. An Ion Chamber Profiler (IC Profiler<sup><span style="font-size:6.5pt;font-family:;" "=""><span style="white-space:nowrap;">™</span></span></sup>) manufactured by Sun Nuclear Corporation was used to confirm measurements by the PPL film. All measurements were normalized to leakage at 100 cm from the target relative to the central axis. Three points were investigated with the IC Profiler, including the top of the gantry, the Varian logo, and the side of the gantry. For the three locations, respectively, the PPL film and the IC profiler were measured 0.142% and 0.131%, 0.036% and 0.030%, and 0.014% and 0.019%. The good agreement between the PPL film and the IC Profiler provides confidence in the use of a more efficient and accurate ion chamber array for head leakage measurements.
基金financial support from the National Natural Science Foundation of China(Grant Nos.51839003 and 41827806)Liaoning Revitalization Talents Program of China(Grant No.XLYCYSZX1902)。
文摘To analyze and predict the mechanical behaviors of deep hard rocks,some key issues concerning rock fracturing mechanics for deep hard rock excavations are discussed.First,a series of apparatuses and methods have been developed to test the mechanical properties and fracturing behaviors of hard rocks under high true triaxial stress paths.Evolution mechanisms of stress-induced disasters in deep hard rock excavations,such as spalling,deep cracking,massive roof collapse,large deformation and rockbursts,have been recognized.The analytical theory for the fracturing process of hard rock masses,including the three-dimensional failure criterion,stress-induced mechanical model,fracturing degree index,energy release index and numerical method,has been established.The cracking-restraint method is developed for mitigating or controlling rock spalling,deep cracking and massive collapse of deep hard rocks.An energy-controlled method is also proposed for the prevention of rockbursts.Finally,two typical cases are used to illustrate the application of the proposed methodology in the Baihetan caverns and Bayu tunnels of China.
基金supported by the National Natural Science Foundation of China(U1808209)Fundamental Research Funds for the Central Universities(DUT18JC40)Liaoning Province Science and Technology Department(201601037)。
文摘A new amphoteric membrane was prepared by blending long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)(S-L-PPO)and polybenzimidazole(PBI)for vanadium redox flow battery(VRFB)application.An acid-base pair structure formed between the imidazole of PBI and sulfonic acid of S-L-PPO resulted in lowered swelling ratio.It favors to reduce the vanadium permeation.While,the increased sulfonic acid concentration ensured that proton conductivity was still at a high level.As a result,a better balance between the vanadium ion permeation(6.1×10^-9 cm^2·s^-1)and proton conductivity(50.8 m S·cm^-1)in the S-L-PPO/PBI-10%membrane was achieved.The VRFB performance with S-L-PPO/PBI-10%membrane exhibited an EE of 82.7%,which was higher than those of pristine S-L-PPO(81.8%)and Nafion 212(78.0%)at 120 m A·cm^-2.In addition,the S-LPPO/PBI-10%membrane had a much longer self-discharge duration time(142 h)than that of Nafion 212(23 h).
基金financially supported by the National Natural Science Foundation of China (21506071)the Special Foundation of Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection (HSXT2-316)
文摘The development of high-efficiency and low-cost catalysts is very crucial for the MeerweinPonndorf-Verley (MPV) reduction of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-dihydroxymethylfuran (DHMF). In this work, an amorphous and mesoporous zirconium phosphonate catalyst (Zr-DTMP), which is a zirconium-containing organic-inorganic nanohybrid, was successfully designed and synthesized by the simple assembly of zirconium tetrachloride (ZrCl4) and diethylene triaminepenta(methylene phosphonic acid)(DTMP). Satisfactorily, when Zr-DTMP was employed for the MPV reduction of HMF in the presence of 2-butanol (secBuOH), DHMF yield could be achieved as 96.5% in 3 h under a relatively mild reaction temperature of 140℃. Systematic investigations indicated that this high catalytic activity should be mainly due to the cooperative role of enhancive Lewis acid site (Zr4+) and Lewis base site (O2-) in activating the carbonyl group of HMF and dissociating the hydroxyl group of secBuOH, respectively. Additionally, Zr-DTMP showed excellent catalytic stability, when it was successively used 5 recycles, its surface characteristics and textural properties still remained almost unchanged, and so, the catalytic activity was not obviously affected. More interestingly, Zr-DTMP could also be applied for the selective reduction of other biomass-derived carbonyl compounds, such as 5-methylfurfural (MF), furfural (FF), levulinic acid (LA), ethyl levulinate (EL) and cyclohexanone (CHN), into the corresponding products with high yields, which is beneficial to the effective synthesis of various valuable bio-based chemicals.