In this work, we investigated the influence of phosphorus and magnetic anneal on the soft magnetic properties of electrodeposited FeMnP alloy films prepared by changing sodium hypophosphite concentrations. X-ray diffr...In this work, we investigated the influence of phosphorus and magnetic anneal on the soft magnetic properties of electrodeposited FeMnP alloy films prepared by changing sodium hypophosphite concentrations. X-ray diffraction radiation patterns showed an amorphous structure of electrodeposited alloy films. The saturation magnetization and coercivity value decreased from 586 emu/cc to 346 emu/cc, and 52 Oe to 18 Oe, with the P content increased, respectively. The absorption resonance peak became broad as the P content increased, and the natural resonance frequency decreased from 1.8 GHz to 0.6 GHz, with the P content increasing. Magnetic annealing of samples reduced the magnetic damping, and natural resonance frequency increased by about 1.8 GHz and 3.5 GHz for the sample with lower and higher P content. The film structure with lower P content changed at 300˚C, while the structure remains unchanged for the films with higher P content. Thus, the crystallization temperature could depend on the P content in the film. FeMnP alloy films could be used in high-frequency devices.展开更多
The protein connector enhancer of kinase suppressor of Ras 2(CNKSR2),present in both the postsynaptic density and cytoplasm of neurons,is a scaffolding protein with several protein-binding domains.Variants of the CNKS...The protein connector enhancer of kinase suppressor of Ras 2(CNKSR2),present in both the postsynaptic density and cytoplasm of neurons,is a scaffolding protein with several protein-binding domains.Variants of the CNKSR2 gene have been implicated in neurodevelopmental disorders,particularly intellectual disability,although the precise mechanism involved has not yet been fully understood.Research has demonstrated that CNKSR2 plays a role in facilitating the localization of postsynaptic density protein complexes to the membrane,thereby influencing synaptic signaling and the morphogenesis of dendritic spines.However,the function of CNKSR2 in the cytoplasm remains to be elucidated.In this study,we used immunoprecipitation and high-resolution liquid chromatography-mass spectrometry to identify the interactors of CNKSR2.Through a combination of bioinformatic analysis and cytological experiments,we found that the CNKSR2 interactors were significantly enriched in the proteome of the centrosome.We also showed that CNKSR2 interacted with the microtubule protein DYNC1H1 and with the centrosome marker CEP290.Subsequent colocalization analysis confirmed the centrosomal localization of CNKSR2.When we downregulated CNKSR2 expression in mouse neuroblastoma cells(Neuro 2A),we observed significant changes in the expression of numerous centrosomal genes.This manipulation also affected centrosome-related functions,including cell size and shape,cell proliferation,and motility.Furthermore,we found that CNKSR2 interactors were highly enriched in de novo variants associated with intellectual disability and autism spectrum disorder.Our findings establish a connection between CNKSR2 and the centrosome,and offer new insights into the underlying mechanisms of neurodevelopmental disorders.展开更多
Intervertebral disc (IVD) degeneration is the leading cause of disability with no disease-modifying treatment. IVD degeneration is associated with instable mechanical loading in the spine, but little is known about ...Intervertebral disc (IVD) degeneration is the leading cause of disability with no disease-modifying treatment. IVD degeneration is associated with instable mechanical loading in the spine, but little is known about how mechanical stress regulates nucleus notochordal (NC) cells to maintain IVD homeostasis. Here we report that mechanical stress can result in excessive integrin αvβ6-mediated activation of transforming growth factor beta (TGFβ), decreased NC cell vacuoles, and increased matrix proteoglycan production, and results in degenerative disc disease (DDD). Knockout of TGFβ type II receptor (TβRII) or integrin αv in the NC cells inhibited functional activity of postnatal NC cells and also resulted in DDD under mechanical loading. Administration of RGD peptide, TGFβ, and αvβ6-neutralizing antibodies attenuated IVD degeneration. Thus, integrin-mediated activation of TGFβ plays a critical role in mechanical signaling transduction to regulate IVD cell function and homeostasis. Manipulation of this signaling pathway may be a potential therapeutic target to modify DDD.展开更多
A series of high oil-absorption resins with low cross-linking degree were synthesized by suspension polymerization using stearyl methacrylate(SMA),2-Ethylhexyl methacrylate(EHMA),and styrene(St)as monomers.Response su...A series of high oil-absorption resins with low cross-linking degree were synthesized by suspension polymerization using stearyl methacrylate(SMA),2-Ethylhexyl methacrylate(EHMA),and styrene(St)as monomers.Response surface methodology(RSM)with central composite design(CCD)was also applied to determine the optimal parameters that are mainly known to affect their synthesis.Thus,the effects of the monomer mass ratio(EHMA:SMA),the rigid monomer(St)dosage,the porous agent(acetone)dosage,and their pairwise interaction on the resin's oil-absorption capacity were analyzed,highlighting PSES-R_(2) as the resin with the optimum performance.The pure oil-absorption rates of PSES-R_(2) for gasoline,diesel,and kerosene were 11.19 g·g^(-1),16.25 g·g^(-1),and 14.84 g·g^(-1),respectively,while the oil removal rates from oily wastewater were 98.82%,65.11%,and 99.63%,respectively.展开更多
BACKGROUND Alterations in plasma and intestinal metabolites contribute to the pathogenesis and progression of alcohol-related liver cirrhosis(ALC).AIM To explore the common and different metabolites in the plasma and ...BACKGROUND Alterations in plasma and intestinal metabolites contribute to the pathogenesis and progression of alcohol-related liver cirrhosis(ALC).AIM To explore the common and different metabolites in the plasma and feces of patients with ALC and evaluate their clinical implications.METHODS According to the inclusion and exclusion criteria,27 patients with ALC and 24 healthy controls(HCs)were selected,and plasma and feces samples were collected.Liver function,blood routine,and other indicators were detected with automatic biochemical and blood routine analyzers.Liquid chromatography-mass spectrometry was used to detect the plasma and feces metabolites of the two groups and the metabolomics of plasma and feces.Also,the correlation between metabolites and clinical features was analyzed.RESULTS More than 300 common metabolites were identified in the plasma and feces of patients with ALC.Pathway analysis showed that these metabolites are enriched in bile acid and amino acid metabolic pathways.Compared to HCs,patients with ALC had a higher level of glycocholic acid(GCA)and taurocholic acid(TCA)in plasma and a lower level of deoxycholic acid(DCA)in the feces,while L-threonine,L-phenylalanine,and L-tyrosine increased simultaneously in plasma and feces.GCA,TCA,L-methionine,L-phenylalanine,and L-tyrosine in plasma were positively correlated with total bilirubin(TBil),prothrombin time(PT),and maddrey discriminant function score(MDF)and negatively correlated with cholinesterase(CHE)and albumin(ALB).The DCA in feces was negatively correlated with TBil,MDF,and PT and positively correlated with CHE and ALB.Moreover,we established a P/S BA ratio of plasma primary bile acid(GCA and TCA)to fecal secondary bile acid(DCA),which was relevant to TBil,PT,and MDF score.CONCLUSION The enrichment of GCA,TCA,L-phenylalanine,L-tyrosine,and L-methionine in the plasma of patients with ALC and the reduction of DCA in feces were related to the severity of ALC.These metabolites may be used as indicators to evaluate the progression of alcohol-related liver cirrhosis.展开更多
The dipolar interactions are investigated through the asymmetric magneto-impedance in FINEMET/SiO_(2)/FePd composite ribbons.The interface between the hard(FePd layer)phase and soft(FINEMET ribbon)phase is coherent by...The dipolar interactions are investigated through the asymmetric magneto-impedance in FINEMET/SiO_(2)/FePd composite ribbons.The interface between the hard(FePd layer)phase and soft(FINEMET ribbon)phase is coherent by SiO_(2)layer in FINEMET/SiO_(2)/FePd composite ribbons,which effectively induces dipolar interactions.The contribution of dipolar interaction to the bias field(Hb)by asymmetrical giant magneto-impedance and magnetic properties is analyzed.The results show that Hb response decreases with the increase of the SiO_(2)layer thickness,indicating that the linear region near-zero field can be tuned by the thickness of SiO_(2)layer.These results allow the GMI ratio(58%)and characteristic frequency(500 kHz)to be optimized.The transverse and longitudinal magnetic domain structures of FINEMET ribbon and FePd film are confirmed,respectively.The composite ribbons with high GMI ratio and low frequency can be applied to linear magnetic sensors.展开更多
Introduction Malignant melanoma (MM) is one of the most deadly cancerst. Although the disease accounts for only about 4% of skin cancer related cases, it is responsible for about 79% of skin cancer deaths. Early dia...Introduction Malignant melanoma (MM) is one of the most deadly cancerst. Although the disease accounts for only about 4% of skin cancer related cases, it is responsible for about 79% of skin cancer deaths. Early diagnosis of MM is, therefore, essential for appropriate treatment decision and, in turn, may give patients the best chance for prolonged survival. About 6% to 8% of malignant melanomas lack typical pigmentation and tend to be managed as benign lesions, making accurate early diagnosis difficultt61. Though subungual MM is rare,展开更多
Argatroban is a synthetic thrombin inhibitor approved by U.S.Food and Drug Administration for the treatment of thrombosis.However,whether it plays a role in the repair of spinal cord injury is unknown.In this study,we...Argatroban is a synthetic thrombin inhibitor approved by U.S.Food and Drug Administration for the treatment of thrombosis.However,whether it plays a role in the repair of spinal cord injury is unknown.In this study,we established a rat model of T10 moderate spinal cord injury using an NYU Impactor ModerⅢand performed intraperitoneal injection of argatroban for 3 consecutive days.Our results showed that argatroban effectively promoted neurological function recovery after spinal cord injury and decreased thrombin expression and activity in the local injured spinal cord.RNA sequencing transcriptomic analysis revealed that the differentially expressed genes in the argatroban-treated group were enriched in the JAK2/STAT3 pathway,which is involved in astrogliosis and glial scar formation.Western blotting and immunofluorescence results showed that argatroban downregulated the expression of the thrombin receptor PAR1 in the injured spinal cord and the JAK2/STAT3 signal pathway.Argatroban also inhibited the activation and proliferation of astrocytes and reduced glial scar formation in the spinal cord.Taken together,these findings suggest that argatroban may inhibit astrogliosis by inhibiting the thrombin-mediated PAR1/JAK2/STAT3 signal pathway,thereby promoting the recovery of neurological function after spinal cord injury.展开更多
Salt stress is a typical abiotic stress in plants that causes slow growth,stunting,and reduced yield and fruit quality.Fertilization is necessary to ensure proper crop growth.However,the effect of fertilization on sal...Salt stress is a typical abiotic stress in plants that causes slow growth,stunting,and reduced yield and fruit quality.Fertilization is necessary to ensure proper crop growth.However,the effect of fertilization on salt tolerance in grapevine is unclear.In this study,we investigated the effect of nitrogen fertilizer(0.01 and 0.1 mol L^(-1)NH_(4)NO_(3))application on the salt(200 mmol L^(-1)NaCl)tolerance of grapevine based on physiological indices,and transcriptomic and metabolomic analyses.The results revealed that 0.01 mol L^(-1)NH_(4)NO_(3) supplementation significantly reduced the accumulation of superoxide anion(O_(2)^(-)·),enhanced the activities of superoxide dismutase(SOD)and peroxidase(POD),and improved the levels of ascorbic acid(AsA)and glutathione(GSH)in grape leaves compared to salt treatment alone.Specifically,joint transcriptome and metabolome analyses showed that the differentially expressed genes(DEGs)and differentially accumulated metabolites(DAMs)were significantly enriched in the flavonoid biosynthesis pathway(ko00941)and the flavone and flavonol biosynthesis pathway(ko00944).In particular,the relative content of quercetin(C00389)was markedly regulated by salt and nitrogen.Further analysis revealed that exogenous foliar application of quercetin improved the SOD and POD activities,increased the AsA and GSH contents,and reduced the H_(2)O_(2) and O_(2)^(-)·contents.Meanwhile,10 hub DEGs,which had high Pearson correlations(R^(2)>0.9)with quercetin,were repressed by nitrogen.In conclusion,all the results indicated that moderate nitrogen and quercetin application under salt stress enhanced the antioxidant system defense response,thus providing a new perspective for improving salt tolerance in grapes.展开更多
Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and...Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and phosphorus(P)in forest plant-soil-microbe systems remains unclear.Methods:We conducted a meta-analysis based on 751 pairs of observations to evaluate the responses of plant,soil and microbial biomass C,N and P nutrients and stoichiometry to N addition in different N intensity(050,50–100,>100 kg·ha^(-1)·year^(-1)of N),duration(0–5,>5 year),method(understory,canopy),and matter(ammonium N,nitrate N,organic N,mixed N).Results:N addition significantly increased plant N:P(leaf:14.98%,root:13.29%),plant C:P(leaf:6.8%,root:25.44%),soil N:P(13.94%),soil C:P(10.86%),microbial biomass N:P(23.58%),microbial biomass C:P(12.62%),but reduced plant C:N(leaf:6.49%,root:9.02%).Furthermore,plant C:N:P stoichiometry changed significantly under short-term N inputs,while soil and microorganisms changed drastically under high N addition.Canopy N addition primarily affected plant C:N:P stoichiometry through altering plant N content,while understory N inputs altered more by influencing soil C and P content.Organic N significantly influenced plant and soil C:N and C:P,while ammonia N changed plant N:P.Plant C:P and soil C:N were strongly correlated with mean annual precipitation(MAT),and the C:N:P stoichiometric flexibility in soil and plant under N addition connected with soil depth.Besides,N addition decoupled the correlations between soil microorganisms and the plant.Conclusions:N addition significantly increased the C:P and N:P in soil,plant,and microbial biomass,reducing plant C:N,and aggravated forest P limitations.Significantly,these impacts were contingent on climate types,soil layers,and N input forms.The findings enhance our comprehension of the plant-soil system nutrient cycling mechanisms in forest ecosystems and plant strategy responses to N deposition.展开更多
Despite the significant efforts made in recent years,the latest data from the World Health Organization indicates that there are substantial challenges in achieving the elimination of hepatitis B virus(HBV)infection b...Despite the significant efforts made in recent years,the latest data from the World Health Organization indicates that there are substantial challenges in achieving the elimination of hepatitis B virus(HBV)infection by 2030.The article in the World Journal of Hepatology by Ismael et al highlighted the limited accessibility to screening and antiviral treatment for HBV infection in eastern Ethiopia.Therefore,the editorial comments on this article will focus on the current challenges and recent efforts in the prevention and treatment of chronic hepatitis B,particularly emphasizing the expansion of screening and antiviral therapy,as well as feasible strategies to improve accessibility for HBV testing,antiviral therapy,and adherence enhancement.展开更多
目的:探讨ALC1(amplified in liver cancer 1)在食管鳞癌组织中的表达及与临床病理特征及总生存率关系,检测过表达ALC1基因对食管癌细胞恶性生物学行为的影响。方法:采用免疫组织化学方法检测245例食管鳞癌组织及癌旁组织中ALC1蛋白的表...目的:探讨ALC1(amplified in liver cancer 1)在食管鳞癌组织中的表达及与临床病理特征及总生存率关系,检测过表达ALC1基因对食管癌细胞恶性生物学行为的影响。方法:采用免疫组织化学方法检测245例食管鳞癌组织及癌旁组织中ALC1蛋白的表达,并探讨其与食管鳞癌患者性别、年龄、分化程度、浸润深度、TNM分期、远处淋巴结转移关系及总生存率关系;采用MTT法、克隆形成实验、Transwell实验及细胞划痕实验等观察高表达ALC1基因在食管癌细胞中的增殖、侵袭及迁移作用。结果:ALC1蛋白在食管癌组织中的阳性表达率明显高于癌旁组织(41.6%vs.21.2%,P<0.05);ALC1的高表达与肿瘤的浸润深度、TNM分期和淋巴结转移明显相关(P<0.05)。ALC1高表达的食管鳞癌患者总生存率低。ALC1基因能够促进KYSE30食管癌细胞过度增殖、侵袭和迁移。结论:ALC1表达升高可能与食管鳞癌的发生、发展相关,导致总生存率下降,高表达的ALC1基因增强KYSE30食管癌细胞的增殖、侵袭及迁移能力,检测ALC1可能为食管癌预后判断提供依据。展开更多
Well integrity technology can effectively ensure the safety of the entire life cycle of oil and gas wells. With the exploration and development of more and more high-temperature, high-pressure, high-yield and deep wel...Well integrity technology can effectively ensure the safety of the entire life cycle of oil and gas wells. With the exploration and development of more and more high-temperature, high-pressure, high-yield and deep wells, and the constantly increasing requirements for safety and environmental protection in various countries, well integrity technology has become a research hot spot in the oil industry. Based on the analysis of the four basic concepts of well integrity: full life cycle, well integrity management system, well barrier, and risk assessment, this article conducts a comparative analysis of the development history of well integrity technologies at home and abroad, and systematically summarizes foreign wells. The current status of integrity technology, based on the above investigation and analysis, puts forward suggestions for the next development direction of well integrity technology, which has certain guiding significance for the development of the integrity of the next step.展开更多
AIM To explore the mechanism by which microRNA-155 (miR-155) regulates the pathogenesis of experimental colitis. METHODS A luciferase assay was performed to confirm the binding of miR-155 to the SHIP-1 3'-UTR. MiR...AIM To explore the mechanism by which microRNA-155 (miR-155) regulates the pathogenesis of experimental colitis. METHODS A luciferase assay was performed to confirm the binding of miR-155 to the SHIP-1 3'-UTR. MiR-155 mimics, negative controls and SHIP-1 expression/knockdown vectors were established and then utilized in gain-and loss-of-function studies performed in raw264.7 cells and primary bone marrow-derived macrophages (BMDMs). Thereafter, dextran sulfate sodium (DSS)-induced colitis mouse model with or without antagomiR-155 treatment was established, and the levels of miR-155 and SHIP-1, as well as the pro-inflammatory capabilities, were measured by western blot, quantitative polymerase chain reaction, and immunohistochemistry. RESULTS MiR-155 directly bound to the 3'-UTR of SHIP-1 mRNA and induced a significant decrease in SHIP-1 expression in both raw264.7 cells and primary BMDMs. MiR-155 markedly promoted cell proliferation and proinflammatory secretions including IL-6, TNF-alpha, IL-1 beta, and IFN-gamma, whereas these effects could be reversed by the restoration of SHIP-1 expression. In vivo studies showed that antagomiR-155 administration could alleviate DSS-induced intestinal inflammation in Balb/c mice. Moreover, significantly increased SHIP-1 expression, as well as decreased Akt activation and in-flammatory response, were observed in the antagomiR-155-treated mice. CONCLUSION MiR-155 promotes experimental colitis by repressing SHIP-1 expression. Thus, the inhibition of miR-155 might be a promising strategy for therapy.展开更多
Ni-Re/SiO2 catalysts with controllable Ni particle sizes(4.5–18.0 nm)were synthesized to investigate the effects of the particle size on the amination of monoethanolamine(MEA).The catalysts were characterized by vari...Ni-Re/SiO2 catalysts with controllable Ni particle sizes(4.5–18.0 nm)were synthesized to investigate the effects of the particle size on the amination of monoethanolamine(MEA).The catalysts were characterized by various techniques and evaluated for the amination reaction in a trickle bed reactor at 170℃,8.0 MPa,and 0.5 h^-1 liquid hourly space velocity of MEA(LHSVMEA)in NH3/H2 atmosphere.The Ni-Re/SiO2 catalyst with the lowest Ni particle size(4.5 nm)exhibited the highest yield(66.4%)of the desired amines(ethylenediamine(EDA)and piperazine(PIP)).The results of the analysis show that the turnover frequency of MEA increased slightly(from 193 to 253 h^-1)as the Ni particle sizes of the Ni-Re/SiO2 catalysts increased from 4.5 to 18.0 nm.Moreover,the product distribution could be adjusted by varying the Ni particle size.The ratio of primary to secondary amines increased from 1.0 to 2.0 upon increasing the Ni particle size from 4.5 to 18.0 nm.Further analyses reveal that the Ni particle size influenced the electronic properties of surface Ni,which in turn affected the adsorption of MEA and the reaction pathway of MEA amination.Compared to those of small Ni particles,large particles possessed a higher proportion of high-coordinated terrace Ni sites and a higher surface electron density,which favored the amination of MEA and NH3 to form EDA.展开更多
文摘In this work, we investigated the influence of phosphorus and magnetic anneal on the soft magnetic properties of electrodeposited FeMnP alloy films prepared by changing sodium hypophosphite concentrations. X-ray diffraction radiation patterns showed an amorphous structure of electrodeposited alloy films. The saturation magnetization and coercivity value decreased from 586 emu/cc to 346 emu/cc, and 52 Oe to 18 Oe, with the P content increased, respectively. The absorption resonance peak became broad as the P content increased, and the natural resonance frequency decreased from 1.8 GHz to 0.6 GHz, with the P content increasing. Magnetic annealing of samples reduced the magnetic damping, and natural resonance frequency increased by about 1.8 GHz and 3.5 GHz for the sample with lower and higher P content. The film structure with lower P content changed at 300˚C, while the structure remains unchanged for the films with higher P content. Thus, the crystallization temperature could depend on the P content in the film. FeMnP alloy films could be used in high-frequency devices.
基金supported by the National Nature Science Foundation of China,No.32101020(to JL)the Natural Science Foundation of Shandong Province,Nos.ZR2020MC071(to JL),ZR2023MH327(to HZ)+1 种基金the Integrated Project of Major Research Plan of National Natural Science Foundation of China,No.92249303(to PL)the Natural Science Foundation of Qingdao,No.23-2-1-193-zyyd-jch(to HZ)。
文摘The protein connector enhancer of kinase suppressor of Ras 2(CNKSR2),present in both the postsynaptic density and cytoplasm of neurons,is a scaffolding protein with several protein-binding domains.Variants of the CNKSR2 gene have been implicated in neurodevelopmental disorders,particularly intellectual disability,although the precise mechanism involved has not yet been fully understood.Research has demonstrated that CNKSR2 plays a role in facilitating the localization of postsynaptic density protein complexes to the membrane,thereby influencing synaptic signaling and the morphogenesis of dendritic spines.However,the function of CNKSR2 in the cytoplasm remains to be elucidated.In this study,we used immunoprecipitation and high-resolution liquid chromatography-mass spectrometry to identify the interactors of CNKSR2.Through a combination of bioinformatic analysis and cytological experiments,we found that the CNKSR2 interactors were significantly enriched in the proteome of the centrosome.We also showed that CNKSR2 interacted with the microtubule protein DYNC1H1 and with the centrosome marker CEP290.Subsequent colocalization analysis confirmed the centrosomal localization of CNKSR2.When we downregulated CNKSR2 expression in mouse neuroblastoma cells(Neuro 2A),we observed significant changes in the expression of numerous centrosomal genes.This manipulation also affected centrosome-related functions,including cell size and shape,cell proliferation,and motility.Furthermore,we found that CNKSR2 interactors were highly enriched in de novo variants associated with intellectual disability and autism spectrum disorder.Our findings establish a connection between CNKSR2 and the centrosome,and offer new insights into the underlying mechanisms of neurodevelopmental disorders.
文摘Intervertebral disc (IVD) degeneration is the leading cause of disability with no disease-modifying treatment. IVD degeneration is associated with instable mechanical loading in the spine, but little is known about how mechanical stress regulates nucleus notochordal (NC) cells to maintain IVD homeostasis. Here we report that mechanical stress can result in excessive integrin αvβ6-mediated activation of transforming growth factor beta (TGFβ), decreased NC cell vacuoles, and increased matrix proteoglycan production, and results in degenerative disc disease (DDD). Knockout of TGFβ type II receptor (TβRII) or integrin αv in the NC cells inhibited functional activity of postnatal NC cells and also resulted in DDD under mechanical loading. Administration of RGD peptide, TGFβ, and αvβ6-neutralizing antibodies attenuated IVD degeneration. Thus, integrin-mediated activation of TGFβ plays a critical role in mechanical signaling transduction to regulate IVD cell function and homeostasis. Manipulation of this signaling pathway may be a potential therapeutic target to modify DDD.
基金This work was funded by Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality(IDHT20180508)Scientific Research Common Program of Beijing Municipal Commission of Education(KM202010017006)+2 种基金the Talents Project of Beijing Organization Department(2018000020124G091)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21021101)the National Key Research and Development Program of China(2019YFA0705803).
文摘A series of high oil-absorption resins with low cross-linking degree were synthesized by suspension polymerization using stearyl methacrylate(SMA),2-Ethylhexyl methacrylate(EHMA),and styrene(St)as monomers.Response surface methodology(RSM)with central composite design(CCD)was also applied to determine the optimal parameters that are mainly known to affect their synthesis.Thus,the effects of the monomer mass ratio(EHMA:SMA),the rigid monomer(St)dosage,the porous agent(acetone)dosage,and their pairwise interaction on the resin's oil-absorption capacity were analyzed,highlighting PSES-R_(2) as the resin with the optimum performance.The pure oil-absorption rates of PSES-R_(2) for gasoline,diesel,and kerosene were 11.19 g·g^(-1),16.25 g·g^(-1),and 14.84 g·g^(-1),respectively,while the oil removal rates from oily wastewater were 98.82%,65.11%,and 99.63%,respectively.
基金Supported by National Key R&D Program of China,No.21YFC2301801Capital's Funds for Health Improvement and Research of China,No.2020-1-2171.
文摘BACKGROUND Alterations in plasma and intestinal metabolites contribute to the pathogenesis and progression of alcohol-related liver cirrhosis(ALC).AIM To explore the common and different metabolites in the plasma and feces of patients with ALC and evaluate their clinical implications.METHODS According to the inclusion and exclusion criteria,27 patients with ALC and 24 healthy controls(HCs)were selected,and plasma and feces samples were collected.Liver function,blood routine,and other indicators were detected with automatic biochemical and blood routine analyzers.Liquid chromatography-mass spectrometry was used to detect the plasma and feces metabolites of the two groups and the metabolomics of plasma and feces.Also,the correlation between metabolites and clinical features was analyzed.RESULTS More than 300 common metabolites were identified in the plasma and feces of patients with ALC.Pathway analysis showed that these metabolites are enriched in bile acid and amino acid metabolic pathways.Compared to HCs,patients with ALC had a higher level of glycocholic acid(GCA)and taurocholic acid(TCA)in plasma and a lower level of deoxycholic acid(DCA)in the feces,while L-threonine,L-phenylalanine,and L-tyrosine increased simultaneously in plasma and feces.GCA,TCA,L-methionine,L-phenylalanine,and L-tyrosine in plasma were positively correlated with total bilirubin(TBil),prothrombin time(PT),and maddrey discriminant function score(MDF)and negatively correlated with cholinesterase(CHE)and albumin(ALB).The DCA in feces was negatively correlated with TBil,MDF,and PT and positively correlated with CHE and ALB.Moreover,we established a P/S BA ratio of plasma primary bile acid(GCA and TCA)to fecal secondary bile acid(DCA),which was relevant to TBil,PT,and MDF score.CONCLUSION The enrichment of GCA,TCA,L-phenylalanine,L-tyrosine,and L-methionine in the plasma of patients with ALC and the reduction of DCA in feces were related to the severity of ALC.These metabolites may be used as indicators to evaluate the progression of alcohol-related liver cirrhosis.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022MF276)the Major Innovation Fund of Qilu University of Technology(Shandong Academy of Science),China(Grant No.2022JBZ02-02)+1 种基金the Fund from Shanghai Science and Technology Commission,China(Grant No.22142200900)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant No.2019GXNSFAA245056).
文摘The dipolar interactions are investigated through the asymmetric magneto-impedance in FINEMET/SiO_(2)/FePd composite ribbons.The interface between the hard(FePd layer)phase and soft(FINEMET ribbon)phase is coherent by SiO_(2)layer in FINEMET/SiO_(2)/FePd composite ribbons,which effectively induces dipolar interactions.The contribution of dipolar interaction to the bias field(Hb)by asymmetrical giant magneto-impedance and magnetic properties is analyzed.The results show that Hb response decreases with the increase of the SiO_(2)layer thickness,indicating that the linear region near-zero field can be tuned by the thickness of SiO_(2)layer.These results allow the GMI ratio(58%)and characteristic frequency(500 kHz)to be optimized.The transverse and longitudinal magnetic domain structures of FINEMET ribbon and FePd film are confirmed,respectively.The composite ribbons with high GMI ratio and low frequency can be applied to linear magnetic sensors.
基金supported by a grant from the Program for Changjiang Scholars and by the Innovative Research Team in University,Ministry of Education,China (No.IRT0760)
文摘Introduction Malignant melanoma (MM) is one of the most deadly cancerst. Although the disease accounts for only about 4% of skin cancer related cases, it is responsible for about 79% of skin cancer deaths. Early diagnosis of MM is, therefore, essential for appropriate treatment decision and, in turn, may give patients the best chance for prolonged survival. About 6% to 8% of malignant melanomas lack typical pigmentation and tend to be managed as benign lesions, making accurate early diagnosis difficultt61. Though subungual MM is rare,
基金supported by the Key Project of the National Natural Science Foundation of China,No.81930070(to SF)the National Natural Science Foundation of China,No.81972074(to XY)the Key Program of Natural Science Foundation of Tianjin,No.19JCZDJC34900(to XY)。
文摘Argatroban is a synthetic thrombin inhibitor approved by U.S.Food and Drug Administration for the treatment of thrombosis.However,whether it plays a role in the repair of spinal cord injury is unknown.In this study,we established a rat model of T10 moderate spinal cord injury using an NYU Impactor ModerⅢand performed intraperitoneal injection of argatroban for 3 consecutive days.Our results showed that argatroban effectively promoted neurological function recovery after spinal cord injury and decreased thrombin expression and activity in the local injured spinal cord.RNA sequencing transcriptomic analysis revealed that the differentially expressed genes in the argatroban-treated group were enriched in the JAK2/STAT3 pathway,which is involved in astrogliosis and glial scar formation.Western blotting and immunofluorescence results showed that argatroban downregulated the expression of the thrombin receptor PAR1 in the injured spinal cord and the JAK2/STAT3 signal pathway.Argatroban also inhibited the activation and proliferation of astrocytes and reduced glial scar formation in the spinal cord.Taken together,these findings suggest that argatroban may inhibit astrogliosis by inhibiting the thrombin-mediated PAR1/JAK2/STAT3 signal pathway,thereby promoting the recovery of neurological function after spinal cord injury.
基金supported by the Key Talent Project of Gansu Provincial Party Committee Organization Department Funding,China(2023RCXM23)the Industrial Support of Gansu Provincial Department of Education Funding,China(2021CYZC-55)the Key Research and Development Projects of Gansu Provincial Funding,China(21YF5NA090)。
文摘Salt stress is a typical abiotic stress in plants that causes slow growth,stunting,and reduced yield and fruit quality.Fertilization is necessary to ensure proper crop growth.However,the effect of fertilization on salt tolerance in grapevine is unclear.In this study,we investigated the effect of nitrogen fertilizer(0.01 and 0.1 mol L^(-1)NH_(4)NO_(3))application on the salt(200 mmol L^(-1)NaCl)tolerance of grapevine based on physiological indices,and transcriptomic and metabolomic analyses.The results revealed that 0.01 mol L^(-1)NH_(4)NO_(3) supplementation significantly reduced the accumulation of superoxide anion(O_(2)^(-)·),enhanced the activities of superoxide dismutase(SOD)and peroxidase(POD),and improved the levels of ascorbic acid(AsA)and glutathione(GSH)in grape leaves compared to salt treatment alone.Specifically,joint transcriptome and metabolome analyses showed that the differentially expressed genes(DEGs)and differentially accumulated metabolites(DAMs)were significantly enriched in the flavonoid biosynthesis pathway(ko00941)and the flavone and flavonol biosynthesis pathway(ko00944).In particular,the relative content of quercetin(C00389)was markedly regulated by salt and nitrogen.Further analysis revealed that exogenous foliar application of quercetin improved the SOD and POD activities,increased the AsA and GSH contents,and reduced the H_(2)O_(2) and O_(2)^(-)·contents.Meanwhile,10 hub DEGs,which had high Pearson correlations(R^(2)>0.9)with quercetin,were repressed by nitrogen.In conclusion,all the results indicated that moderate nitrogen and quercetin application under salt stress enhanced the antioxidant system defense response,thus providing a new perspective for improving salt tolerance in grapes.
基金supported by the National Natural Science Foundation of China(Nos.31800369,32271686,U1904204)the State Scholarship Fund of Chinathe Innovation Scientists and Technicians Troop Construction Projects of Henan Province(No.182101510005)。
文摘Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and phosphorus(P)in forest plant-soil-microbe systems remains unclear.Methods:We conducted a meta-analysis based on 751 pairs of observations to evaluate the responses of plant,soil and microbial biomass C,N and P nutrients and stoichiometry to N addition in different N intensity(050,50–100,>100 kg·ha^(-1)·year^(-1)of N),duration(0–5,>5 year),method(understory,canopy),and matter(ammonium N,nitrate N,organic N,mixed N).Results:N addition significantly increased plant N:P(leaf:14.98%,root:13.29%),plant C:P(leaf:6.8%,root:25.44%),soil N:P(13.94%),soil C:P(10.86%),microbial biomass N:P(23.58%),microbial biomass C:P(12.62%),but reduced plant C:N(leaf:6.49%,root:9.02%).Furthermore,plant C:N:P stoichiometry changed significantly under short-term N inputs,while soil and microorganisms changed drastically under high N addition.Canopy N addition primarily affected plant C:N:P stoichiometry through altering plant N content,while understory N inputs altered more by influencing soil C and P content.Organic N significantly influenced plant and soil C:N and C:P,while ammonia N changed plant N:P.Plant C:P and soil C:N were strongly correlated with mean annual precipitation(MAT),and the C:N:P stoichiometric flexibility in soil and plant under N addition connected with soil depth.Besides,N addition decoupled the correlations between soil microorganisms and the plant.Conclusions:N addition significantly increased the C:P and N:P in soil,plant,and microbial biomass,reducing plant C:N,and aggravated forest P limitations.Significantly,these impacts were contingent on climate types,soil layers,and N input forms.The findings enhance our comprehension of the plant-soil system nutrient cycling mechanisms in forest ecosystems and plant strategy responses to N deposition.
基金Supported by the National Key Research and Development Program of China,No.2022YFC2304505 and No.2021YFC2301801the Beijing Municipal of Science and Technology Major Project,No.20220383kyCapital’s Funds for Health Improvement and Research of China,No.2024-1-2181.
文摘Despite the significant efforts made in recent years,the latest data from the World Health Organization indicates that there are substantial challenges in achieving the elimination of hepatitis B virus(HBV)infection by 2030.The article in the World Journal of Hepatology by Ismael et al highlighted the limited accessibility to screening and antiviral treatment for HBV infection in eastern Ethiopia.Therefore,the editorial comments on this article will focus on the current challenges and recent efforts in the prevention and treatment of chronic hepatitis B,particularly emphasizing the expansion of screening and antiviral therapy,as well as feasible strategies to improve accessibility for HBV testing,antiviral therapy,and adherence enhancement.
文摘目的:探讨ALC1(amplified in liver cancer 1)在食管鳞癌组织中的表达及与临床病理特征及总生存率关系,检测过表达ALC1基因对食管癌细胞恶性生物学行为的影响。方法:采用免疫组织化学方法检测245例食管鳞癌组织及癌旁组织中ALC1蛋白的表达,并探讨其与食管鳞癌患者性别、年龄、分化程度、浸润深度、TNM分期、远处淋巴结转移关系及总生存率关系;采用MTT法、克隆形成实验、Transwell实验及细胞划痕实验等观察高表达ALC1基因在食管癌细胞中的增殖、侵袭及迁移作用。结果:ALC1蛋白在食管癌组织中的阳性表达率明显高于癌旁组织(41.6%vs.21.2%,P<0.05);ALC1的高表达与肿瘤的浸润深度、TNM分期和淋巴结转移明显相关(P<0.05)。ALC1高表达的食管鳞癌患者总生存率低。ALC1基因能够促进KYSE30食管癌细胞过度增殖、侵袭和迁移。结论:ALC1表达升高可能与食管鳞癌的发生、发展相关,导致总生存率下降,高表达的ALC1基因增强KYSE30食管癌细胞的增殖、侵袭及迁移能力,检测ALC1可能为食管癌预后判断提供依据。
文摘Well integrity technology can effectively ensure the safety of the entire life cycle of oil and gas wells. With the exploration and development of more and more high-temperature, high-pressure, high-yield and deep wells, and the constantly increasing requirements for safety and environmental protection in various countries, well integrity technology has become a research hot spot in the oil industry. Based on the analysis of the four basic concepts of well integrity: full life cycle, well integrity management system, well barrier, and risk assessment, this article conducts a comparative analysis of the development history of well integrity technologies at home and abroad, and systematically summarizes foreign wells. The current status of integrity technology, based on the above investigation and analysis, puts forward suggestions for the next development direction of well integrity technology, which has certain guiding significance for the development of the integrity of the next step.
文摘AIM To explore the mechanism by which microRNA-155 (miR-155) regulates the pathogenesis of experimental colitis. METHODS A luciferase assay was performed to confirm the binding of miR-155 to the SHIP-1 3'-UTR. MiR-155 mimics, negative controls and SHIP-1 expression/knockdown vectors were established and then utilized in gain-and loss-of-function studies performed in raw264.7 cells and primary bone marrow-derived macrophages (BMDMs). Thereafter, dextran sulfate sodium (DSS)-induced colitis mouse model with or without antagomiR-155 treatment was established, and the levels of miR-155 and SHIP-1, as well as the pro-inflammatory capabilities, were measured by western blot, quantitative polymerase chain reaction, and immunohistochemistry. RESULTS MiR-155 directly bound to the 3'-UTR of SHIP-1 mRNA and induced a significant decrease in SHIP-1 expression in both raw264.7 cells and primary BMDMs. MiR-155 markedly promoted cell proliferation and proinflammatory secretions including IL-6, TNF-alpha, IL-1 beta, and IFN-gamma, whereas these effects could be reversed by the restoration of SHIP-1 expression. In vivo studies showed that antagomiR-155 administration could alleviate DSS-induced intestinal inflammation in Balb/c mice. Moreover, significantly increased SHIP-1 expression, as well as decreased Akt activation and in-flammatory response, were observed in the antagomiR-155-treated mice. CONCLUSION MiR-155 promotes experimental colitis by repressing SHIP-1 expression. Thus, the inhibition of miR-155 might be a promising strategy for therapy.
基金supported by the National Natural Science Foundation of China(21273227)Strategic Priority Research Program of Chinese Academy of Sciences(XDB17000000)~~
文摘Ni-Re/SiO2 catalysts with controllable Ni particle sizes(4.5–18.0 nm)were synthesized to investigate the effects of the particle size on the amination of monoethanolamine(MEA).The catalysts were characterized by various techniques and evaluated for the amination reaction in a trickle bed reactor at 170℃,8.0 MPa,and 0.5 h^-1 liquid hourly space velocity of MEA(LHSVMEA)in NH3/H2 atmosphere.The Ni-Re/SiO2 catalyst with the lowest Ni particle size(4.5 nm)exhibited the highest yield(66.4%)of the desired amines(ethylenediamine(EDA)and piperazine(PIP)).The results of the analysis show that the turnover frequency of MEA increased slightly(from 193 to 253 h^-1)as the Ni particle sizes of the Ni-Re/SiO2 catalysts increased from 4.5 to 18.0 nm.Moreover,the product distribution could be adjusted by varying the Ni particle size.The ratio of primary to secondary amines increased from 1.0 to 2.0 upon increasing the Ni particle size from 4.5 to 18.0 nm.Further analyses reveal that the Ni particle size influenced the electronic properties of surface Ni,which in turn affected the adsorption of MEA and the reaction pathway of MEA amination.Compared to those of small Ni particles,large particles possessed a higher proportion of high-coordinated terrace Ni sites and a higher surface electron density,which favored the amination of MEA and NH3 to form EDA.
基金supported by projects of the National Natural Science Foundation of China(61425025)the Beijing Municipal Science and Technology Project(Z151100000915070 and Z171100000117008)。