In this paper,the asymptotic performance of arbitrary rectangular Quadrature Amplitude Modulation (QAM) signals over fading channels is investigated. A novel unified asymptotic average Symbol Error Probability (SEP) e...In this paper,the asymptotic performance of arbitrary rectangular Quadrature Amplitude Modulation (QAM) signals over fading channels is investigated. A novel unified asymptotic average Symbol Error Probability (SEP) expression is derived in terms of diversity and coding gain. The validity and accuracy of the analytical result are verified by means of computer simulations. Furthermore,the results presented are very easy to be extended to the systems with multi-channel diversity receivers.展开更多
基金Supported by the National Natural Science Foundation of China (NSFC) (No. 90604035)the National 863 High-Tech R&D Program (No. 2007AA01Z228)the 111 Project (No. 111-2-14)
文摘In this paper,the asymptotic performance of arbitrary rectangular Quadrature Amplitude Modulation (QAM) signals over fading channels is investigated. A novel unified asymptotic average Symbol Error Probability (SEP) expression is derived in terms of diversity and coding gain. The validity and accuracy of the analytical result are verified by means of computer simulations. Furthermore,the results presented are very easy to be extended to the systems with multi-channel diversity receivers.