TaB_(2)-SiC coating modified by different content of MoSi_(2) was fabricated on graphite substrate with SiC inner coating by liquid phase sintering to elevate the anti-oxidation capability of the TaB_(2)-SiC coatings....TaB_(2)-SiC coating modified by different content of MoSi_(2) was fabricated on graphite substrate with SiC inner coating by liquid phase sintering to elevate the anti-oxidation capability of the TaB_(2)-SiC coatings.As compared to the sample with the TaB_(2)-40wt% SiC coating,the coating sample modified with MoSi_(2) exhibited a weight gain trend at lower temperatures,the fastest weight loss rate went down by 76%,and the relative oxygen permeability value reduced from about 1% to near 0.More importantly,the large amount of SiO_(2) glass phase produced over the coating during oxidation was in contact with the modification of MoSi_(2),which was proved to be beneficial to the dispersion of Ta-oxides.A concomitantly formed continuous Ta-Si-O-B compound glass layer showed excellent capacity to prevent oxygen penetration.However,when the TaB_(2) content was sacrificed to increase the MoSi_(2) content,the relative oxygen permeability of the coating increased instead of decreased.Thus,on the basis of ample TaB_(2) content,increasing the MoSi_(2) content of the coating is conducive to reducing the relative oxygen permeability of the coatings in a broad temperature region.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.2018GF14).
文摘TaB_(2)-SiC coating modified by different content of MoSi_(2) was fabricated on graphite substrate with SiC inner coating by liquid phase sintering to elevate the anti-oxidation capability of the TaB_(2)-SiC coatings.As compared to the sample with the TaB_(2)-40wt% SiC coating,the coating sample modified with MoSi_(2) exhibited a weight gain trend at lower temperatures,the fastest weight loss rate went down by 76%,and the relative oxygen permeability value reduced from about 1% to near 0.More importantly,the large amount of SiO_(2) glass phase produced over the coating during oxidation was in contact with the modification of MoSi_(2),which was proved to be beneficial to the dispersion of Ta-oxides.A concomitantly formed continuous Ta-Si-O-B compound glass layer showed excellent capacity to prevent oxygen penetration.However,when the TaB_(2) content was sacrificed to increase the MoSi_(2) content,the relative oxygen permeability of the coating increased instead of decreased.Thus,on the basis of ample TaB_(2) content,increasing the MoSi_(2) content of the coating is conducive to reducing the relative oxygen permeability of the coatings in a broad temperature region.