Carbon capture,utilization and storage(CCUS) is widely recognized as a vital strategy for mitigating the impact of human induced climate change.Among various CO_(2) adsorbents,intermediate-temperature solid adsorbents...Carbon capture,utilization and storage(CCUS) is widely recognized as a vital strategy for mitigating the impact of human induced climate change.Among various CO_(2) adsorbents,intermediate-temperature solid adsorbents have garnered significant attention due to their potential applications in hydrogen utilization,specifically in the water gas shift,steam reforming and gasification processes.These processes are crucial for achieving carbon neutrality.While laboratory-level studies have showcased the high adsorption capacity of these materials via various synthesis and modification methods,their practical application in complex industrial environments remains challenging,impeding the commercialization process.This review aims to critically summarize the recent research progress made in intermediatetemperature(200-400℃) solid CO_(2) adsorbents,particularly focusing on indicators such as cyclability,gas selectivity,and formability,which play vital roles in industrial application scenarios.Additionally,we provide an overview of laboratory-level advanced technologies specifically tailored for industrial applications.Furthermore,we highlight several industrial-ready advanced technologies that can pave the way for overcoming the challenges associated with large-scale implementation.The insights provided by this review aim to assist researchers in identifying the most relevant research directions for industrial applications.By promoting advances in the application of solid adsorbents,we strive to facilitate the ultimate goal of achieving carbon neutrality.展开更多
Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body...Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.展开更多
Effects of residues produced by agricultural wastes fermentation(AWF)on low grade copper sulfide ores bioleaching,copper recovery,and microbial community were investigated.The results indicated that adding appropriate...Effects of residues produced by agricultural wastes fermentation(AWF)on low grade copper sulfide ores bioleaching,copper recovery,and microbial community were investigated.The results indicated that adding appropriate bulk of AWF made contributions to low grade copper sulfide ores bioleaching,which may be mainly realized through reducing the passivation layer formed by Fe3+hydrolysis.Improved copper recovery(78.35%)and bacteria concentration(9.56×10^(7)cells·mL^(−1))were yielded in the presence of 5 g·L^(−1)AWF.The result of 16S rDNA analysis demonstrated that microbial community was differentiated by adding AWF.Bacteria proportion,such as Acidithiobacillus ferrooxidans,Moraxella osloensis,and Lactobacillus acetotolerans changed distinctly.Great difference between samples was showed according to beta diversity index,and the maximum value reached 0.375.Acidithiobacillus ferrooxidans accounted for the highest proportion throughout the bioleaching process,and that of sample in the presence of 5 g·L^(−) AWF reached 28.63%.The results should show reference to application of agricultural wastes and low grade copper sulfide ores.展开更多
Since the approval of the lipid nanoparticles(LNP)-mRNA vaccines against the SARS-CoV-2 virus,there has been an increased interest in the delivery of mRNA through LNPs.However,current LNP formulations contain PEG lipi...Since the approval of the lipid nanoparticles(LNP)-mRNA vaccines against the SARS-CoV-2 virus,there has been an increased interest in the delivery of mRNA through LNPs.However,current LNP formulations contain PEG lipids,which can stimulate the generation of anti-PEG antibodies.The presence of these antibodies can potentially cause adverse reactions and reduce therapeutic efficacy after administration.Given the widespread deployment of the COVID-19 vaccines,the increased exposure to PEG may necessitate the evaluation of alternative LNP formulations without PEG components.In this study,we investigated a series of polysarcosine(pSar)lipids as alternatives to the PEG lipids to determine whether pSar lipids could still provide the functionality of the PEG lipids in the ALC-0315 and SM-102 LNP systems.We found that complete replacement of the PEG lipid with a pSar lipid can increase or maintain mRNA delivery efficiency and exhibit similar safety profiles in vivo.展开更多
Gliomas originating from anatomically and developmentally distinct brain regions have different clinical outcomes.However,the molecular landscape underlying this difference remains largelyunknown.We analyzed key molec...Gliomas originating from anatomically and developmentally distinct brain regions have different clinical outcomes.However,the molecular landscape underlying this difference remains largelyunknown.We analyzed key molecular mutations via sequencing and correlated them with clinical characteristics in 180 adult patients with gliomas originating from the neocortex,mesocortex,and cerebellum.Cases of cerebellar origin had significantly longer survival than those of supratentorial origin,consistent with higher rates of mutation in key genes associated with supratentorial gliomas.展开更多
基金funded by the National Key R&D Program of China(2022YFB4101702)the National Natural Science Foundation of China(52106072 and 52225003)the Fundamental Research Funds for Central Universities(2019JQ03015)。
文摘Carbon capture,utilization and storage(CCUS) is widely recognized as a vital strategy for mitigating the impact of human induced climate change.Among various CO_(2) adsorbents,intermediate-temperature solid adsorbents have garnered significant attention due to their potential applications in hydrogen utilization,specifically in the water gas shift,steam reforming and gasification processes.These processes are crucial for achieving carbon neutrality.While laboratory-level studies have showcased the high adsorption capacity of these materials via various synthesis and modification methods,their practical application in complex industrial environments remains challenging,impeding the commercialization process.This review aims to critically summarize the recent research progress made in intermediatetemperature(200-400℃) solid CO_(2) adsorbents,particularly focusing on indicators such as cyclability,gas selectivity,and formability,which play vital roles in industrial application scenarios.Additionally,we provide an overview of laboratory-level advanced technologies specifically tailored for industrial applications.Furthermore,we highlight several industrial-ready advanced technologies that can pave the way for overcoming the challenges associated with large-scale implementation.The insights provided by this review aim to assist researchers in identifying the most relevant research directions for industrial applications.By promoting advances in the application of solid adsorbents,we strive to facilitate the ultimate goal of achieving carbon neutrality.
基金the National Key R&D Program of China(No.2022YFC2904103)the Key Program of the National Natural Science Foundation of China(No.52034001)+1 种基金the 111 Project(No.B20041)the China National Postdoctoral Program for Innovative Talents(No.BX20230041)。
文摘Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.
基金financially supported by the Key Program of National Natural Science Foundation of China (Nos. 52034001 and 51734001)the Innovation Team in Key Fields of Ministry of Science and Technology of the People’s Republic of China (No. 2018RA400)+2 种基金the 111 Project (No. B20041)the Fundamental Research Funds for the Central Universities (No. FRF-TP-18-003C1)China Scholarship Council (No. 202006460037)
文摘Effects of residues produced by agricultural wastes fermentation(AWF)on low grade copper sulfide ores bioleaching,copper recovery,and microbial community were investigated.The results indicated that adding appropriate bulk of AWF made contributions to low grade copper sulfide ores bioleaching,which may be mainly realized through reducing the passivation layer formed by Fe3+hydrolysis.Improved copper recovery(78.35%)and bacteria concentration(9.56×10^(7)cells·mL^(−1))were yielded in the presence of 5 g·L^(−1)AWF.The result of 16S rDNA analysis demonstrated that microbial community was differentiated by adding AWF.Bacteria proportion,such as Acidithiobacillus ferrooxidans,Moraxella osloensis,and Lactobacillus acetotolerans changed distinctly.Great difference between samples was showed according to beta diversity index,and the maximum value reached 0.375.Acidithiobacillus ferrooxidans accounted for the highest proportion throughout the bioleaching process,and that of sample in the presence of 5 g·L^(−) AWF reached 28.63%.The results should show reference to application of agricultural wastes and low grade copper sulfide ores.
文摘Since the approval of the lipid nanoparticles(LNP)-mRNA vaccines against the SARS-CoV-2 virus,there has been an increased interest in the delivery of mRNA through LNPs.However,current LNP formulations contain PEG lipids,which can stimulate the generation of anti-PEG antibodies.The presence of these antibodies can potentially cause adverse reactions and reduce therapeutic efficacy after administration.Given the widespread deployment of the COVID-19 vaccines,the increased exposure to PEG may necessitate the evaluation of alternative LNP formulations without PEG components.In this study,we investigated a series of polysarcosine(pSar)lipids as alternatives to the PEG lipids to determine whether pSar lipids could still provide the functionality of the PEG lipids in the ALC-0315 and SM-102 LNP systems.We found that complete replacement of the PEG lipid with a pSar lipid can increase or maintain mRNA delivery efficiency and exhibit similar safety profiles in vivo.
基金funded by the Youth Program of the National Natural Science Foundation of China(No.81802485 to Y.Cheng)the Beijing New-star Plan of Science and Technology(China)(No.Z201100006820148 to Y.Cheng,No.Z201100006820149 to L.M.Wang).
文摘Gliomas originating from anatomically and developmentally distinct brain regions have different clinical outcomes.However,the molecular landscape underlying this difference remains largelyunknown.We analyzed key molecular mutations via sequencing and correlated them with clinical characteristics in 180 adult patients with gliomas originating from the neocortex,mesocortex,and cerebellum.Cases of cerebellar origin had significantly longer survival than those of supratentorial origin,consistent with higher rates of mutation in key genes associated with supratentorial gliomas.