The increasing awareness of environmental concerns has prompted a surge in the exploration of leadfree,high-power ceramic capacitors.Ongoing efforts to develop leadfree dielectric ceramics with exceptional energystora...The increasing awareness of environmental concerns has prompted a surge in the exploration of leadfree,high-power ceramic capacitors.Ongoing efforts to develop leadfree dielectric ceramics with exceptional energystorage performance(ESP)have predominantly relied on multicomponent composite strategies,often accomplished under ultrahigh electric fields.However,this approach poses challenges in insulation and system downsizing due to the necessary working voltage under such conditions.Despite extensive study,bulk ceramics of(Bi_(0.5)Na_(0.5))TiO_(3)(BNT),a prominent lead-free dielectric ceramic family,have seldom achieved a recoverable energy-storage(ES)density(Wrec)exceeding 7 J cm^(−3).This study introduces a novel approach to attain ceramic capacitors with high ESP under moderate electric fields by regulating permittivity based on a linear dielectric model,enhancing insulation quality,and engineering domain structures through chemical formula optimization.The incorporation of SrTiO_(3)(ST)into the BNT matrix is revealed to reduce the dielectric constant,while the addition of Bi(Mg_(2/3)Nb_(1/3))O_(3)(BMN)aids in maintaining polarization.Additionally,the study elucidates the methodology to achieve high ESP at moderate electric fields ranging from 300 to 500 kV cm^(−1).In our optimized composition,0.5(Bi_(0.5)Na_(0.4)K_(0.1))TiO_(3)–0.5(2/3ST-1/3BMN)(B-0.5SB)ceramics,we achieved a Wrec of 7.19 J cm^(−3) with an efficiency of 93.8%at 460 kV cm^(−1).Impressively,the B-0.5SB ceramics exhibit remarkable thermal stability between 30 and 140℃ under 365 kV cm^(−1),maintaining a Wrec exceeding 5 J cm^(−3).This study not only establishes the B-0.5SB ceramics as promising candidates for ES materials but also demonstrates the feasibility of optimizing ESP by modifying the dielectric constant under specific electric field conditions.Simultaneously,it provides valuable insights for the future design of ceramic capacitors with high ESP under constraints of limited electric field.展开更多
The reported electrocaloric(EC)effect in ferroelectrics is poised for application in the next generation of solidstate refrigeration technology,exhibiting substantial developmental potential.This study introduces a no...The reported electrocaloric(EC)effect in ferroelectrics is poised for application in the next generation of solidstate refrigeration technology,exhibiting substantial developmental potential.This study introduces a novel and efficient EC effect strategy in(1-x)Pb(Lu_(1/2)Nb_(1/2))O_(3)-xPbTiO_(3)(PLN-xPT)ceramics for low electric-fielddriven devices.Phase-field simulations provide fundamental insights into thermally induced continuous phase transitions,guiding subsequent experimental investigations.A comprehensive composition/temperature-driven phase evolution diagram is constructed,elucidating the sequential transformation from ferroelectric(FE)to antiferroelectric(AFE)and finally to paraelectric(PE)phases for x=0.10-0.18 components.Direct measurements of EC performance highlight x=0.16 as an outstanding performer,exhibiting remarkable properties,including an adiabatic temperature change(ΔT)of 3.03 K,EC strength(ΔT/ΔE)of 0.08 K cm kV-1,and a temperature span(Tspan)of 31℃.The superior EC effect performance is attributed to the temperature-induced FE to AFE transition at low electric fields and diffusion phase transition behavior contributing to the wide Tspan.This work provides valuable insights into developing high-performance EC effect across broad temperature ranges through the strategic design of continuous phase transitions,offering a simplified and economical approach for advancing ecofriendly and efficient solid-state cooling technologies.展开更多
Due to the thermal depolarization effect,adequate piezoelectric performance with high operating temperature is regarded to be challenging to accomplish concurrently in piezoceramics for applications in specific piezoe...Due to the thermal depolarization effect,adequate piezoelectric performance with high operating temperature is regarded to be challenging to accomplish concurrently in piezoceramics for applications in specific piezoelectric devices.In this work,we synthesized(0.8−x)BiFeO_(3)-x PbTi_(3)-0.2Ba(Zr_(0.25)Ti_(0.75))O_(3)(abbreviated as BFO-x PT-BZT)ternary solid solutions with 0.15≤x≤0.30 by conventional solid-state reaction method.The MPB composition with a coexisting state of rhombohedral-tetragonal phases exhibits enhanced electromechanical properties,including Curie temperature of 380℃,large-signal equivalent piezoelectric coefficient d^(∗)_(33)of 395 pm V^(-1),small-signal piezoelectric coefficient d_(33)of 302 pC N^(-1),and electromechanical coupling factor k_(p)of 50.2%,which is comparable to commercial PZT-5A ceramics,indicating potential in high-temperature applications.Furthermore,in-situ X-ray diffraction(XRD)and piezoelectric force microscopic(PFM)techniques demonstrate that multiphase coexistence and complex nanodomains promote piezoelectric response via synergism.The x=0.24 composition exhibits the highest in-situ d_(33)of 577 pC N^(-1)and good temperature stability in 30−280℃,indicating that BZT-modified BFO-PT ceramics are promising candidates for high-temperature piezoelectric devices.展开更多
In the present work,the nature of phase evolution of(1x)(Na_(0.5)Bi_(0.5))TiO_(3)-xSrTiO_(3)(NBT-xST)solid solutions with x of 0e0.6 is revealed by characterizing the dielectric and ferroelectric properties.Two unique...In the present work,the nature of phase evolution of(1x)(Na_(0.5)Bi_(0.5))TiO_(3)-xSrTiO_(3)(NBT-xST)solid solutions with x of 0e0.6 is revealed by characterizing the dielectric and ferroelectric properties.Two unique dielectric anomalies associated with high-temperature nanoregions(PNRs)in the ergodic relaxor(ER)state and low-temperature PNRs in the nonergodic relaxor(NR)state are identified.Characteristic temperatures,including TB,TRT*,Tm,Td and TT*,are determined in fresh and poled states on the basis of the characteristics of the evolution of these two dielectric anomalies.The whole evolution of the transition from the NR state to the ER state is reflected by the temperature-dependent polarization versus electric field(P-E)hysteresis loops,i.e.,from the square loops,via the double-like loops,to the slim loops.The characteristic temperatures,including TP-N,TN-R and TR-dis,are determined by the characteristics of the evolution of P-E loops.Accordingly,a phase diagram of NBT-xST was constructed according to these characteristic temperatures.Most importantly,the relationship between polarization responses and heterogeneous polar phase coexistence has been established and a schematic diagram is given.This work will help to understand the phase evolution and its impact on the macroscopic properties of NBT and the associated NBT-based solid solutions.展开更多
Owing to the complex composition architecture of these solid solutions,some fundamental issues of the classical(1-x)(Bi_(1/2)Na_(1/2))TiO_(3) -x(Bi_(1/2)K_(1/2))TiO_(3)(BNT-xBKT)binary system,such as details of phase ...Owing to the complex composition architecture of these solid solutions,some fundamental issues of the classical(1-x)(Bi_(1/2)Na_(1/2))TiO_(3) -x(Bi_(1/2)K_(1/2))TiO_(3)(BNT-xBKT)binary system,such as details of phase evolution and optimal Na/K ratio associated with the highest strain responses,remain unresolved.In this work,we systematically investigated the phase evolution of the BNT-xBKT binary solid solution with x ranging from 0.12 to 0.24 using not only routine X-ray diffraction and weak-signal dielectric characterization,but also temperature-dependent polarization versus electric field(P-E)and current versus electric field(I-E)curves.Our results indicate an optimal Na/K ratio of 81/19 based on high-field polarization and elec-trostrain characterizations.As the temperature increased above 100?C,the x¼0.19 composition pro-duces ultrahigh electrostrains(>0.5%)with high thermal stability.The ultrahigh and stable electrostrains were primarily due to the combined effect of electric-field-induced relaxor-to-ferroelectric phase tran-sition and ferroelectric-to-relaxor diffuse phase transition during heating.More specifically,we revealed the relationship between phase evolution and electrostrain responses based on the characteristic tem-peratures determined by both weak-field dielectric and high-field ferroelectric/electromechanical property characterizations.This work not only clarifies the phase evolution in BNT-xBKT binary solid solution,but also paves the way for future strain enhancement through doping strategies.展开更多
3Lead-free(BiasNaus)TiO_(3)(BNT)-based relaxor ferroelectric(RFE)ceramics have attracted a lot of atten-tion due to their high power density and rapid charge-discharge apabilities,as well as their potential applicatio...3Lead-free(BiasNaus)TiO_(3)(BNT)-based relaxor ferroelectric(RFE)ceramics have attracted a lot of atten-tion due to their high power density and rapid charge-discharge apabilities,as well as their potential application in pulse power capacitors.However,because of the desire for smaller electronic devices,their energy storage performance(ESP)should be enhanced even further.We describe a defect engineering strategy for enhancing the antiferroelectric-like RFE feature of BNT-based ceramics by unequal substi-tution of rare-earth La^(3+)in this paper.The ESP of La^(3+)-doped samples is raised by 25%with the same synthetic procedure and thidkness,due to an inrease in the critical electric field(E-field)and saturated E-field during polarization response,which is induced by a modifiation in the energy barrier between the lattice torsion.More impressively,an ultrahigh recoverable energy storage density Wrec of 8.58J/cm^(3)and a high energy storage efficiengyηof 945%are simultaneously attained in 3 at.%La^(3+)-substituted 0.6(Bi_(0.5)Na_(0.4)K_(0.1))_(1-1.5x)La_(x)TiO_(3)-0.4[2/3SrTiO_(3)-1/3Bi(Mg_(2/3)Ni_(1/3))O_(3)]RFE ceamics with good temperatue stability(W_(rec)=4.6±0.2 J/cm^(3)and higher n of 290%from 30℃to 120℃),frequency stability,and fatigue resistance.The significant inrease in ESP achieved through defect engineering not only proves the effectiveness of our strategy,but also presents a novel dielectric material with potential applications in pulse power apacitors.展开更多
Rare-earth Sm^(3+)-doped Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.25PbTiO_(3)(PMN-0.25PT)ferroelectric ceramics with doping amounts between 0%-3%were developed via a conventional solid-state method.The doping effect of Sm^(3+)ions...Rare-earth Sm^(3+)-doped Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.25PbTiO_(3)(PMN-0.25PT)ferroelectric ceramics with doping amounts between 0%-3%were developed via a conventional solid-state method.The doping effect of Sm^(3+)ions on the PMN-0.25PT matrix was systematically investigated on the basis of the phase structure,temperature-dependent dielectric,ferroelectric,and electrotechnical properties.Due to the disruption of long-range ferroelectric order,the addition of Sm^(3+)ions effectively lowers the Tm(temperature corresponding to maximum permittivity)of the samples,leading to enhanced relaxor ferroelectric(RFE)characteristic and superior electric field-induced strain(electrostrain)properties at room temperature.Intriguingly,a considerable large-signal equivalent piezoelectric coefficient d∗_(33)of 2376 pm/V and a very small hysteresis were attained in the PMN-0.25PT component doped with 2.5 mol.%Sm^(3+).The findings of piezoelectric force microscopy indicate that the addition of Sm^(3+)increases the local structural heterogeneity of the PMN-0.25PT matrix and that the enhanced electromechanical performance is due to the dynamic behavior of polar nanoregions.Importantly,strong temperature-dependent electrostrain and electrostrictive coefficient Q33 are observed in the critical region around Tm in all Sm^(3+)-modified PMN-0.25PT ceramic samples studied.This work elucidates the phase transition behavior of Sm^(3+)-doped PMN-0.25PT and reveals a critical region where electrostrictive properties can be greatly improved due to a strong temperature-dependent characteristic.展开更多
In the last few decades,dielectric capacitors have gotten a lot of attention because they can store more power and charge and discharge very quickly.But it has a low energy-storage density(Wrec),efficiency(h),and temp...In the last few decades,dielectric capacitors have gotten a lot of attention because they can store more power and charge and discharge very quickly.But it has a low energy-storage density(Wrec),efficiency(h),and temperature stability.By adding Pb(Mg1/3Nb2/3)O3(PMN)and(Bi0$1Sr0.85)TiO3(BST)to a nonstoichiometric(Bi0$51Na0.5)TiO3(BNT)matrix,the goal is to change the phase transition properties and make the material more relaxor ferroelectric(RFE)by lowering the remnant polarization Pr and keeping the maximum polarization Pmax.A viscous polymer process(VPP)is used to improve the electric breakdown strength,which is also a key part of being able to store energy.By working together,ceramics with the formula 0.79[0.85BNT-0.15PMN]-0.21BST(BP-0.21BST)are made.The phase structure has been changed from a rhombohedral phase to a rhombohedral-tetragonal coexisted phase.This is beneficial for RFE properties and gives a Wrec of 6.45 J/cm^(3) and a h of 90%at 400 kV/cm.Also,the energy-storage property is very temperature stable between 30 and 150C.These results show that process optimization and composition design can be used to improve the energy storage properties,and that the dielectric ceramic materials made can be used in high-powder pulse dielectric capacitors.展开更多
Large electrostrains with high temperature stability and low hysteresis are essential for applications in high-precision actuator devices.However,achieving simultaneously all three of the aforementioned features in fe...Large electrostrains with high temperature stability and low hysteresis are essential for applications in high-precision actuator devices.However,achieving simultaneously all three of the aforementioned features in ferroelectric ceramics remains a considerable challenge.In this work,we firstly report a high unipolar electrostrain(0.12%at 60 kV/cm)in(1ex)NaNbO_(3)-x[(Ba0.85Ca0.15)(Zr_(0.1)Ti_(0.9))O_(3)](NN-xBCZT)ferroelectric polycrystalline ceramics with excellent thermal stability(variation less than 10%in the temperature range of 30-160℃)and ultra-low hysteresis(<6%).Secondly,the high-field electrostrain response is dominated by the intrinsic electrostrictive effect,which may account for more than 80%of the electrostrain.Furthermore,due to the thermal stability of the polarization in the pure tetragonal phase,the large electrostrain demonstrates extraordinarily high stability from room temperature to 140℃.Finally,in-situ piezoelectric force microscopy reveals ultra-highly stable domain structures,which also guarantee the thermal stability of the electrostrain in(NN-xBCZT ferroelectrics ceramics.This study not only clarifies the origin of thermally stable electrostrain in NN-xBCZT ferroelectric perovskite in terms of electrostrictive effect,but also provides ideas for developing applicable ferroelectric ceramic materials used in actuator devices with excellent thermal stability.展开更多
CaO doped 0.5Na_(0.5)Bi_(0.5)TiO_(3)-0.5SrTiO_(3)(ST)were prepared by a traditional solid-reaction method under various sintering temperatures.X-ray diffraction(XRD),electron scanning microscopy(SEM),and electrical me...CaO doped 0.5Na_(0.5)Bi_(0.5)TiO_(3)-0.5SrTiO_(3)(ST)were prepared by a traditional solid-reaction method under various sintering temperatures.X-ray diffraction(XRD),electron scanning microscopy(SEM),and electrical measurements were employed to check the phases,microstructures,and energy storage properties.The doping of CaO can deeply affect the relaxation nature of NBT-ST ceramics.So the energy storage performance could be modified.Specially,sample with 1 at.%CaO exhibits a high energy storage density of 1.51 J/cm3.Any further details can be found within this study.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51761145024)the Key Research and Development Program of Shaanxi(Program No.2022KWZ-22)+3 种基金the Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-YB-441)the Youth Innovation Team of Shaanxi Universitiesthe Fundamental Research Funds of Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices(AFMD-KFJJ-21203)The research was made possible by Russian Science Foundation(Project No.23-42-00116).
文摘The increasing awareness of environmental concerns has prompted a surge in the exploration of leadfree,high-power ceramic capacitors.Ongoing efforts to develop leadfree dielectric ceramics with exceptional energystorage performance(ESP)have predominantly relied on multicomponent composite strategies,often accomplished under ultrahigh electric fields.However,this approach poses challenges in insulation and system downsizing due to the necessary working voltage under such conditions.Despite extensive study,bulk ceramics of(Bi_(0.5)Na_(0.5))TiO_(3)(BNT),a prominent lead-free dielectric ceramic family,have seldom achieved a recoverable energy-storage(ES)density(Wrec)exceeding 7 J cm^(−3).This study introduces a novel approach to attain ceramic capacitors with high ESP under moderate electric fields by regulating permittivity based on a linear dielectric model,enhancing insulation quality,and engineering domain structures through chemical formula optimization.The incorporation of SrTiO_(3)(ST)into the BNT matrix is revealed to reduce the dielectric constant,while the addition of Bi(Mg_(2/3)Nb_(1/3))O_(3)(BMN)aids in maintaining polarization.Additionally,the study elucidates the methodology to achieve high ESP at moderate electric fields ranging from 300 to 500 kV cm^(−1).In our optimized composition,0.5(Bi_(0.5)Na_(0.4)K_(0.1))TiO_(3)–0.5(2/3ST-1/3BMN)(B-0.5SB)ceramics,we achieved a Wrec of 7.19 J cm^(−3) with an efficiency of 93.8%at 460 kV cm^(−1).Impressively,the B-0.5SB ceramics exhibit remarkable thermal stability between 30 and 140℃ under 365 kV cm^(−1),maintaining a Wrec exceeding 5 J cm^(−3).This study not only establishes the B-0.5SB ceramics as promising candidates for ES materials but also demonstrates the feasibility of optimizing ESP by modifying the dielectric constant under specific electric field conditions.Simultaneously,it provides valuable insights for the future design of ceramic capacitors with high ESP under constraints of limited electric field.
基金financially supported by the National Natural Science Foundation of China(Grant No.52261135548)the Key Research and Development Program of Shaanxi(Program No.2022KWZ-22)+2 种基金The research was made possible by Russian Science Foundation(Project No.23-42-00116)The equipment of the Ural Center for Shared Use“Modern nanotechnology”Ural Federal University(Reg.No.2968)which is supported by the Ministry of ScienceHigher Education RF(Project No.075-15-2021-677)was used.
文摘The reported electrocaloric(EC)effect in ferroelectrics is poised for application in the next generation of solidstate refrigeration technology,exhibiting substantial developmental potential.This study introduces a novel and efficient EC effect strategy in(1-x)Pb(Lu_(1/2)Nb_(1/2))O_(3)-xPbTiO_(3)(PLN-xPT)ceramics for low electric-fielddriven devices.Phase-field simulations provide fundamental insights into thermally induced continuous phase transitions,guiding subsequent experimental investigations.A comprehensive composition/temperature-driven phase evolution diagram is constructed,elucidating the sequential transformation from ferroelectric(FE)to antiferroelectric(AFE)and finally to paraelectric(PE)phases for x=0.10-0.18 components.Direct measurements of EC performance highlight x=0.16 as an outstanding performer,exhibiting remarkable properties,including an adiabatic temperature change(ΔT)of 3.03 K,EC strength(ΔT/ΔE)of 0.08 K cm kV-1,and a temperature span(Tspan)of 31℃.The superior EC effect performance is attributed to the temperature-induced FE to AFE transition at low electric fields and diffusion phase transition behavior contributing to the wide Tspan.This work provides valuable insights into developing high-performance EC effect across broad temperature ranges through the strategic design of continuous phase transitions,offering a simplified and economical approach for advancing ecofriendly and efficient solid-state cooling technologies.
基金supported by the National Natu-ral Science Foundation of China(Grant No.52261135548)the Key Research and Development Program of Shaanxi(Program No.2022KWZ-22)+3 种基金the National Key Research and Development Program of China(Grant Nos.2021YFE0115000 and 2021YFB3800602)Russian Science Foundation(Project No.23-42-00116)The equipment of the Ural Center for Shared Use“Modern nanotechnology”Ural Federal University(Reg.No.2968)the Ministry of Science and Higher Education RF(Project No.075-15-2021-677)was used.
文摘Due to the thermal depolarization effect,adequate piezoelectric performance with high operating temperature is regarded to be challenging to accomplish concurrently in piezoceramics for applications in specific piezoelectric devices.In this work,we synthesized(0.8−x)BiFeO_(3)-x PbTi_(3)-0.2Ba(Zr_(0.25)Ti_(0.75))O_(3)(abbreviated as BFO-x PT-BZT)ternary solid solutions with 0.15≤x≤0.30 by conventional solid-state reaction method.The MPB composition with a coexisting state of rhombohedral-tetragonal phases exhibits enhanced electromechanical properties,including Curie temperature of 380℃,large-signal equivalent piezoelectric coefficient d^(∗)_(33)of 395 pm V^(-1),small-signal piezoelectric coefficient d_(33)of 302 pC N^(-1),and electromechanical coupling factor k_(p)of 50.2%,which is comparable to commercial PZT-5A ceramics,indicating potential in high-temperature applications.Furthermore,in-situ X-ray diffraction(XRD)and piezoelectric force microscopic(PFM)techniques demonstrate that multiphase coexistence and complex nanodomains promote piezoelectric response via synergism.The x=0.24 composition exhibits the highest in-situ d_(33)of 577 pC N^(-1)and good temperature stability in 30−280℃,indicating that BZT-modified BFO-PT ceramics are promising candidates for high-temperature piezoelectric devices.
基金the National Natural Science Foundation of China(Grant nos.51672226,51772239)the Fundamental Research Funds for the Central Universities(XJTU).
文摘In the present work,the nature of phase evolution of(1x)(Na_(0.5)Bi_(0.5))TiO_(3)-xSrTiO_(3)(NBT-xST)solid solutions with x of 0e0.6 is revealed by characterizing the dielectric and ferroelectric properties.Two unique dielectric anomalies associated with high-temperature nanoregions(PNRs)in the ergodic relaxor(ER)state and low-temperature PNRs in the nonergodic relaxor(NR)state are identified.Characteristic temperatures,including TB,TRT*,Tm,Td and TT*,are determined in fresh and poled states on the basis of the characteristics of the evolution of these two dielectric anomalies.The whole evolution of the transition from the NR state to the ER state is reflected by the temperature-dependent polarization versus electric field(P-E)hysteresis loops,i.e.,from the square loops,via the double-like loops,to the slim loops.The characteristic temperatures,including TP-N,TN-R and TR-dis,are determined by the characteristics of the evolution of P-E loops.Accordingly,a phase diagram of NBT-xST was constructed according to these characteristic temperatures.Most importantly,the relationship between polarization responses and heterogeneous polar phase coexistence has been established and a schematic diagram is given.This work will help to understand the phase evolution and its impact on the macroscopic properties of NBT and the associated NBT-based solid solutions.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51772239 and 51761145024)the Fundamental Research Funds for the Central Universities(XJTU)。
文摘Owing to the complex composition architecture of these solid solutions,some fundamental issues of the classical(1-x)(Bi_(1/2)Na_(1/2))TiO_(3) -x(Bi_(1/2)K_(1/2))TiO_(3)(BNT-xBKT)binary system,such as details of phase evolution and optimal Na/K ratio associated with the highest strain responses,remain unresolved.In this work,we systematically investigated the phase evolution of the BNT-xBKT binary solid solution with x ranging from 0.12 to 0.24 using not only routine X-ray diffraction and weak-signal dielectric characterization,but also temperature-dependent polarization versus electric field(P-E)and current versus electric field(I-E)curves.Our results indicate an optimal Na/K ratio of 81/19 based on high-field polarization and elec-trostrain characterizations.As the temperature increased above 100?C,the x¼0.19 composition pro-duces ultrahigh electrostrains(>0.5%)with high thermal stability.The ultrahigh and stable electrostrains were primarily due to the combined effect of electric-field-induced relaxor-to-ferroelectric phase tran-sition and ferroelectric-to-relaxor diffuse phase transition during heating.More specifically,we revealed the relationship between phase evolution and electrostrain responses based on the characteristic tem-peratures determined by both weak-field dielectric and high-field ferroelectric/electromechanical property characterizations.This work not only clarifies the phase evolution in BNT-xBKT binary solid solution,but also paves the way for future strain enhancement through doping strategies.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52172127)the National Key R&D Program of China(Grant Nos.2021YFE0115000 and SQ2021YFB380003202)the Fundamental Research Funds for the Central Universities(XJTU).The SEM work was done at International Center for Dielectric Research(ICDR),Xi’an Jiaotong University,Xi'an,China.
文摘3Lead-free(BiasNaus)TiO_(3)(BNT)-based relaxor ferroelectric(RFE)ceramics have attracted a lot of atten-tion due to their high power density and rapid charge-discharge apabilities,as well as their potential application in pulse power capacitors.However,because of the desire for smaller electronic devices,their energy storage performance(ESP)should be enhanced even further.We describe a defect engineering strategy for enhancing the antiferroelectric-like RFE feature of BNT-based ceramics by unequal substi-tution of rare-earth La^(3+)in this paper.The ESP of La^(3+)-doped samples is raised by 25%with the same synthetic procedure and thidkness,due to an inrease in the critical electric field(E-field)and saturated E-field during polarization response,which is induced by a modifiation in the energy barrier between the lattice torsion.More impressively,an ultrahigh recoverable energy storage density Wrec of 8.58J/cm^(3)and a high energy storage efficiengyηof 945%are simultaneously attained in 3 at.%La^(3+)-substituted 0.6(Bi_(0.5)Na_(0.4)K_(0.1))_(1-1.5x)La_(x)TiO_(3)-0.4[2/3SrTiO_(3)-1/3Bi(Mg_(2/3)Ni_(1/3))O_(3)]RFE ceamics with good temperatue stability(W_(rec)=4.6±0.2 J/cm^(3)and higher n of 290%from 30℃to 120℃),frequency stability,and fatigue resistance.The significant inrease in ESP achieved through defect engineering not only proves the effectiveness of our strategy,but also presents a novel dielectric material with potential applications in pulse power apacitors.
基金the National Natural Science Foundation of China(Grant No.52261135548)the Key Research and Development Program of Shaanxi(Program No.2022KWZ-22)+3 种基金the National Key Research and Development Program of China(Grant Nos.2021YFE0115000 and 2021YFB3800602)Russian Science Foundation(Project No.23-42-00116)the Ural Center for Shared Use“Modern nanotechnology”Ural Federal University(Reg.No.2968)which is supported by the Ministry of Science and Higher Education RF(Project No.075-15-2021-677)was used.The SEM work was done at International Center for Dielectric Research(ICDR),Xi’an Jiaotong University,Xi’an,China.
文摘Rare-earth Sm^(3+)-doped Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.25PbTiO_(3)(PMN-0.25PT)ferroelectric ceramics with doping amounts between 0%-3%were developed via a conventional solid-state method.The doping effect of Sm^(3+)ions on the PMN-0.25PT matrix was systematically investigated on the basis of the phase structure,temperature-dependent dielectric,ferroelectric,and electrotechnical properties.Due to the disruption of long-range ferroelectric order,the addition of Sm^(3+)ions effectively lowers the Tm(temperature corresponding to maximum permittivity)of the samples,leading to enhanced relaxor ferroelectric(RFE)characteristic and superior electric field-induced strain(electrostrain)properties at room temperature.Intriguingly,a considerable large-signal equivalent piezoelectric coefficient d∗_(33)of 2376 pm/V and a very small hysteresis were attained in the PMN-0.25PT component doped with 2.5 mol.%Sm^(3+).The findings of piezoelectric force microscopy indicate that the addition of Sm^(3+)increases the local structural heterogeneity of the PMN-0.25PT matrix and that the enhanced electromechanical performance is due to the dynamic behavior of polar nanoregions.Importantly,strong temperature-dependent electrostrain and electrostrictive coefficient Q33 are observed in the critical region around Tm in all Sm^(3+)-modified PMN-0.25PT ceramic samples studied.This work elucidates the phase transition behavior of Sm^(3+)-doped PMN-0.25PT and reveals a critical region where electrostrictive properties can be greatly improved due to a strong temperature-dependent characteristic.
文摘In the last few decades,dielectric capacitors have gotten a lot of attention because they can store more power and charge and discharge very quickly.But it has a low energy-storage density(Wrec),efficiency(h),and temperature stability.By adding Pb(Mg1/3Nb2/3)O3(PMN)and(Bi0$1Sr0.85)TiO3(BST)to a nonstoichiometric(Bi0$51Na0.5)TiO3(BNT)matrix,the goal is to change the phase transition properties and make the material more relaxor ferroelectric(RFE)by lowering the remnant polarization Pr and keeping the maximum polarization Pmax.A viscous polymer process(VPP)is used to improve the electric breakdown strength,which is also a key part of being able to store energy.By working together,ceramics with the formula 0.79[0.85BNT-0.15PMN]-0.21BST(BP-0.21BST)are made.The phase structure has been changed from a rhombohedral phase to a rhombohedral-tetragonal coexisted phase.This is beneficial for RFE properties and gives a Wrec of 6.45 J/cm^(3) and a h of 90%at 400 kV/cm.Also,the energy-storage property is very temperature stable between 30 and 150C.These results show that process optimization and composition design can be used to improve the energy storage properties,and that the dielectric ceramic materials made can be used in high-powder pulse dielectric capacitors.
基金supported by the National Natural Science Foundation of China(Grant Nos.52172127 and 52072092)the International Cooperation Project of Shaanxi Province(Grant No.2022KWZ-22)+1 种基金the National Key Research and Development Program of China(Grant Nos.2021YFE0115000 and SQ2021YFB380003202)the Youth Innovation Team of Shaanxi Universities and Scientific Research Program Funded by Shaanxi Provincial Education Department(Grant No.21JP104)。
文摘Large electrostrains with high temperature stability and low hysteresis are essential for applications in high-precision actuator devices.However,achieving simultaneously all three of the aforementioned features in ferroelectric ceramics remains a considerable challenge.In this work,we firstly report a high unipolar electrostrain(0.12%at 60 kV/cm)in(1ex)NaNbO_(3)-x[(Ba0.85Ca0.15)(Zr_(0.1)Ti_(0.9))O_(3)](NN-xBCZT)ferroelectric polycrystalline ceramics with excellent thermal stability(variation less than 10%in the temperature range of 30-160℃)and ultra-low hysteresis(<6%).Secondly,the high-field electrostrain response is dominated by the intrinsic electrostrictive effect,which may account for more than 80%of the electrostrain.Furthermore,due to the thermal stability of the polarization in the pure tetragonal phase,the large electrostrain demonstrates extraordinarily high stability from room temperature to 140℃.Finally,in-situ piezoelectric force microscopy reveals ultra-highly stable domain structures,which also guarantee the thermal stability of the electrostrain in(NN-xBCZT ferroelectrics ceramics.This study not only clarifies the origin of thermally stable electrostrain in NN-xBCZT ferroelectric perovskite in terms of electrostrictive effect,but also provides ideas for developing applicable ferroelectric ceramic materials used in actuator devices with excellent thermal stability.
基金supported by the National Natural Science Foundation of China(51502248,51672226)Fundamental Research Funds for the Central Universities(XDJK2017D013,XDJK2018B009,XDJK2018C002)National College Student innovation and Entrepreneurship Program of Southwest University(201810635001).
文摘CaO doped 0.5Na_(0.5)Bi_(0.5)TiO_(3)-0.5SrTiO_(3)(ST)were prepared by a traditional solid-reaction method under various sintering temperatures.X-ray diffraction(XRD),electron scanning microscopy(SEM),and electrical measurements were employed to check the phases,microstructures,and energy storage properties.The doping of CaO can deeply affect the relaxation nature of NBT-ST ceramics.So the energy storage performance could be modified.Specially,sample with 1 at.%CaO exhibits a high energy storage density of 1.51 J/cm3.Any further details can be found within this study.