Objective: To explore the effect of lower limb rehabilitation robot combined with task-oriented training on stroke patients and its influence on KFAROM score. Methods: 100 stroke patients with hemiplegia admitted to o...Objective: To explore the effect of lower limb rehabilitation robot combined with task-oriented training on stroke patients and its influence on KFAROM score. Methods: 100 stroke patients with hemiplegia admitted to our hospital from January 2023 to December 2023 were randomly divided into two groups, the control group (50 cases) was given task-oriented training assisted by nurses, and the observation group (50 cases) was given lower limb rehabilitation robot with task-oriented training. Lower limb balance, lower limb muscle strength, motor function, ankle function, knee flexion range of motion and walking ability were observed. Results: After treatment, the scores of BBS, quadriceps femoris and hamstrings in the observation group were significantly higher than those in the control group (P Conclusion: In the clinical treatment of stroke patients, the combination of task-oriented training and lower limb rehabilitation robot can effectively improve the lower limb muscle strength, facilitate the recovery of balance function, and have a significant effect on the recovery of motor function, which can improve the walking ability of stroke patients and the range of motion of knee flexion, and achieve more ideal therapeutic effectiveness.展开更多
Wnt signaling are critical pathway involved in organ development, tumorigenesis, and cancer progression. WNT7A, a member of the Wnt family, remains poorly understood in terms of its role and the underlying molecular m...Wnt signaling are critical pathway involved in organ development, tumorigenesis, and cancer progression. WNT7A, a member of the Wnt family, remains poorly understood in terms of its role and the underlying molecular mechanisms it entails in head and neck squamous cell carcinoma (HNSCC). According to the Cancer Genome Atlas (TCGA), transcriptome sequencing data of HNSCC, the expression level of WNT7A in tumors was found to be higher than in adjacent normal tissues, which was validated using Real-time RT-PCR and immunohistochemistry. Unexpectedly, overexpression of WNT7A did not activate the canonical Wnt-β-catenin pathway in HNSCC. Instead, our findings suggested that WNT7A potentially activated the FZD7/JAK1/STAT3 signaling pathway, leading to enhanced cell proliferation, self-renewal, and resistance to apoptosis. Furthermore, in a patient-derived xenograft (PDX) tumor model, high expression of WNT7A and phosphorylated STAT3 was observed, which positively correlated with tumor progression.These findings underscore the significance of WNT7A in HNSCC progression and propose the targeting of key molecules within the FZD7/JAK1/STAT3 pathway as a promising strategy for precise treatment of HNSCC.展开更多
AIM: To investigate the regulatory mechanism of glycogen synthase kinase 3β(GSK3β) in epithelialmesenchymal transition(EMT) process after proliferative vitreoretinopathy(PVR) induction. METHODS: Experimenta...AIM: To investigate the regulatory mechanism of glycogen synthase kinase 3β(GSK3β) in epithelialmesenchymal transition(EMT) process after proliferative vitreoretinopathy(PVR) induction. METHODS: Experimental PVR was induced by intravitreal injection of retinal pigment epithelium(RPE) cells in the eyes of rabbits. A PI3 K/Akt inhibitor(wortmannin) and a GSK3β inhibitor(Li Cl) were also injected at different time during PVR progress. Electroretinogram(ERG), ocular fundus photographs, and B-scan ultrasonography were used to observe the PVR progress. Western blot test on the extracted retina were performed at 1, 2, 4 wk. The expression of the mesenchymal marker vimentin was determined by immunohistochemistry. Toxicity of wortmannin and Li Cl were evaluated by ERG and Td Tmediated d UTP nick-end labeling(TUNEL) assay. The vitreous was also collected for metabolomic analysis. RESULTS: Experimental PVR could significantly lead to EMT, along with the suppressed expression of GSK3β and the activation of Wnt/β-catenin and PI3 K/Akt pathways. It was verified that upregulating the expression of GSK3β could effectively inhibit EMT process by suppressing Wnt/β-catenin and PI3 K/Akt pathways. CONCLUSION: GSK3β effectively inhibits EMT via the Wnt/β-catenin and PI3 K/Akt pathways. GSK3β may be regarded as a promising target of experimental PVR inhibition.展开更多
To develop an improved approach in achieving an excellent combination of high strength and ductility,the solutionized Al?Cu?Li plates were subjected to rolling at cryogenic and room temperatures,respectively,to a redu...To develop an improved approach in achieving an excellent combination of high strength and ductility,the solutionized Al?Cu?Li plates were subjected to rolling at cryogenic and room temperatures,respectively,to a reduction of83%,followed by aging treatment at160°C.The results indicate that Al?Cu?Li alloys through cryogenic rolling followed by aging treatment possess better mechanical properties.Rolling at cryogenic temperature produces a high density of dislocations because of the suppression of dynamic recovery,which in turn promotes the precipitation of T1(Al2CuLi)precipitates during aging.Such high density of T1precipitates enable effective dislocation pinning,leading to an increase in strength and ductility.In contrast,room temperature rolled alloys after aging treatment exhibit lower strength and ductility due to low density of T1precipitates in the grain interior and high density of T1precipitates around subgrain boundaries.展开更多
Background The reversibility of pulmonary arterial hypertension(PAH)in congenital heart disease(CHD)is of great importance for the operability of CHD.Proteomics analysis found that transgelin was significantly upregul...Background The reversibility of pulmonary arterial hypertension(PAH)in congenital heart disease(CHD)is of great importance for the operability of CHD.Proteomics analysis found that transgelin was significantly upregulated in the lung tissue of CHD-PAH patients,especially in the irreversible group.However,how exactly it participated in CHD-PAH development is unknown.展开更多
Multi-robot systems can be applied to patrol a concerned environment for security purposes.According to different goals,this work reviews the existing researches in a multi-robot patrolling field from the perspectives...Multi-robot systems can be applied to patrol a concerned environment for security purposes.According to different goals,this work reviews the existing researches in a multi-robot patrolling field from the perspectives of regular and adversarial patrolling.Regular patrolling requires robots to visit important locations as frequently as possible and a series of deterministic strategies are proposed,while adversarial one focuses on unpredictable robots’moving patterns to maximize adversary detection probability.Under each category,a systematic survey is done including problem statements and modeling,patrolling objectives and evaluation criteria,and representative patrolling strategies and approaches.Existing problems and open questions are presented accordingly.展开更多
BACKGROUND Purpura nephritis,also called Henoch-Schönlein purpura nephritis,is a systemic disease with small dead vasculitis as the main pathological change.AIM To observe the influence of transitional nursing ac...BACKGROUND Purpura nephritis,also called Henoch-Schönlein purpura nephritis,is a systemic disease with small dead vasculitis as the main pathological change.AIM To observe the influence of transitional nursing activities on the compliance behaviors and disease knowledge of children with purpura nephritis.METHODS A total of 82 children with purpura nephritis were included and divided into a general nursing group(41 children)and transitional nursing group(41 children)using the envelope method.The general nursing group received routine nursing care,while the transitional nursing group received transitional nursing care.The behaviors,knowledge of the disease,and self-management ability of the two groups were evaluated after nursing care was provided.RESULTS The scores of four items(self-care ability,self-responsibility,health knowledge level,and self-concept)in the transitional nursing group were significantly higher than those in the general nursing group.CONCLUSION Transitional nursing can directly improve the disease knowledge level and selfmanagement ability of children with purpura nephritis and effectively reduce complications.展开更多
Carbon dots(CDs)have become popular nanomaterials in biomedical and agricultural fields.Herein we synthesized multifunctional CDs which showed anti-cancer and anti-fungal activities.The low cytotoxicity,stable fluores...Carbon dots(CDs)have become popular nanomaterials in biomedical and agricultural fields.Herein we synthesized multifunctional CDs which showed anti-cancer and anti-fungal activities.The low cytotoxicity,stable fluorescence and high photothermal conversion efficiency enable the CDs with imagingguided photothermal therapy.The CDs also exhibited intrinsic anti-fungal activity even at a low concentration,i.e.,40 mg·L^(-1) of CDs induced 20%mortality in cucumber downy mildew.Moreover,the largeπ-conjugated nanostructure and the richness of amino and hydroxyl groups make them a powerful delivery platform for flumorph(a fungicide)with a high loading efficiency of 47.18%.Meanwhile,the heat converted from the light can accelerate the release of flumorph from CDs,and thus efficiently kill fungus.展开更多
Primula beesiana Forr.is an attractive wildflower endemically distributed in the wet habitats of subalpine/alpine regions of southwestern China.This study is an attempt to understand how this plant adapts to wet habit...Primula beesiana Forr.is an attractive wildflower endemically distributed in the wet habitats of subalpine/alpine regions of southwestern China.This study is an attempt to understand how this plant adapts to wet habitats and high altitudes.Specifically,we examined the effects of cold stratification,light,GA3,KNO3,and temperature on P.beesiana seed germination.KNO3 and GA3 increased germination percentage and germination rate compared to control treatments at 15/5 and 25/15℃.Untreated seeds germinated well(>80%)at higher temperatures(20,25 and 28℃),whereas at lower(5,10 and15℃)and extremely high temperatures(30 and 32℃)germination decreased significantly.However,after cold stratification(4-16 weeks),the germination percentage of P.beesiana seeds at low temperatures(5-15℃)and the germination rate at high temperatures(30℃)increased significantly,suggesting that P.beesiana has type 3 non-deep physiological dormancy.The base temperature and thermal time for germination decreased in seeds that were cold stratified for 16 weeks.Cold-stratified seeds incubated at fluctuating temperatures(especially at 15/5℃)had significantly high germination percentages and germination rates in light,but not in dark,compared to the corresponding constant temperature(10℃).Seeds had a strict light requirement at all temperatures,even after experiencing cold stratification;however,the combinations of cold stratification and fluctuating temperature increased germination when seeds were transferred from dark to light.Such dormancy/germination responses to light and temperature are likely mechanisms that ensure germination occurs only in spring and at/near the soil surface,thus avoiding seedling death by freezing,inundation and/or germination deep in the soil.展开更多
Peanut(Arachis hypogaea L.)is an important oil and cash crop in the world.Peanut germplasm collected in China are abundant,which provides important material guarantee for peanut breeding and industrial development.Her...Peanut(Arachis hypogaea L.)is an important oil and cash crop in the world.Peanut germplasm collected in China are abundant,which provides important material guarantee for peanut breeding and industrial development.Here,the safe conservation technology and indicators of peanut germplasm resources in the Oil Crops Middleterm Genebank of China were expounded from three processes of storage,monitoring,reproduction and renewal.We summarized and reviewed the situation of conservation and utilization of peanut germplasm resources in the Middle-term Genebank in the past 20 years.The future research direction of peanut resources in the Oil Crops Middle-term Genebank of China is prospected.展开更多
Limited by the tiny structure of axons,the effects of these axonal hyperpolarizing inputs on neuronal activity have not been directly elucidated.Here,we imitated these processes by simultaneously recording the activit...Limited by the tiny structure of axons,the effects of these axonal hyperpolarizing inputs on neuronal activity have not been directly elucidated.Here,we imitated these processes by simultaneously recording the activities of the somas and proximal axons of cortical pyramidal neurons.We found that spikes and subthreshold potentials propagate between somas and axons with high fidelity.Furthermore,inhibitory inputs on axons have opposite effects on neuronal activity according to their temporal integration with upstream signals.Concurrent with somatic depolarization,inhibitory inputs on axons decrease neuronal excitability and impede spike generation.In addition,following action potentials,inhibitory inputs on an axon increase neuronal spike capacity and improve spike precision.These results indicate that inhibitory inputs on proximal axons have dual regulatory functions in neuronal activity(suppression or facilitation)according to neuronal network patterns.展开更多
Peanut is a major oilseed and food legume.Shelling percentage(SP),closely associated with seed yield,is a trait whose improvement is a major goal of peanut breeding.In this study,a mapping population(Xuhua 13×Zho...Peanut is a major oilseed and food legume.Shelling percentage(SP),closely associated with seed yield,is a trait whose improvement is a major goal of peanut breeding.In this study,a mapping population(Xuhua 13×Zhonghua 6)was used to map quantitative trait loci(QTL)controlling SP in four environments.Two stable major QTL for SP were mapped on both SSR-and SNP-based genetic maps.q SPA07.1 on chromosome A07 explained up to 31.7%of phenotypic variation,and q SPA08.2 on chromosome A08 explained up to 10.8%.Favorable alleles of q SPA07.1 and q SPA08.2 were derived from the female and male parents,respectively.Eight recombinant inbred lines(RILs)carrying both favorable alleles showed superiority in SP over the two parents in all environmental trials.A combination of the two favorable alleles using the linked markers was verified to increase SP by~5%in the RIL population and by~3%SP in diverse peanut cultivars.q SPA07.1 and q SPA08.2 were delimited to respectively a 0.73-Mb interval harboring 96 genes and a 3.93-Mb interval harboring 238 genes.Respectively five and eight genes with high expression in pods,including enzymes and transcription factors,were assigned as candidate genes for q SPA07.1 and q SPA08.2.These consistent major QTL provide an opportunity for fine mapping of genes controlling SP,and the linked markers may be useful for genetic improvement of SP in peanut.展开更多
IQ67-domain(IQD)proteins function in plant defense and in organ development.The mechanisms by which they influence cotton fiber development are unknown.In the present study,GhIQD10 was expressed mainly in the transiti...IQ67-domain(IQD)proteins function in plant defense and in organ development.The mechanisms by which they influence cotton fiber development are unknown.In the present study,GhIQD10 was expressed mainly in the transition period of cotton fiber development,and GhIQD10-overexpression lines showed shorter fibers.GhIQD10 interacted with GhCaM7 and the interaction was inhibited by Ca^(2+).In in vitro ovule culture,Ca^(2+)rescued the shorter-fiber phenotype of GhIQD10-overexpression lines,which were insensitive to the Ca^(2+)channel inhibitor verapamil and the Ca^(2+)pool release channel blocker 2-aminoethoxydiphenyl borate.We conclude that GhIQD10 affects cotton fiber elongation via Ca^(2+)signaling by interacting with GhCaM7.Brassinosteroid(BR)biosynthesis and signaling genes were up-regulated in GhIQD10-overexpression lines.Fiber development in these lines was not affected by epibrassinolide or the BR biosynthesis inhibitor brassinozole,indicating that the influence of GhIQD10 on fiber elongation was not associated with BR.展开更多
Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are in...Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are investigated in a fluid circulation system with a total length of 39 m.A 9-m section pipe is transparent consisted of two complete rectangular loops.By means of pressurization with gas-saturated water,the system can gradually reach the equilibrium conditions.The result shows that the hydrates are delayed to appear as floccules or thin films covering the methane bubbles.When the circulation velocity is below 750 rpm,hydrate is finally deposited as a“hydrate bed”at upmost of inner wall,narrowing the flow channel of the pipeline.Nevertheless,no plugging is observed during all the experimental runs.The five stages of hydrate deposition are proposed based on the experimental results.It is also revealed that a higher driving pressure is needed at a lower flow rate.The driving force of hydrate formation from gas and water obtained by melting hydrate is higher than that from fresh water with no previous hydrate history.The authors hope that this work will be beneficial for the flow assurance of the following oceanic field hydrate recovery trials.展开更多
T-cell acute lymphoblastic leukemia(T-ALL)is a hematological tumor caused by the malignant transformation of immature T-cell progenitor cells.Emerging studies have stated that microRNAs(miRNAs)may play key roles in T-...T-cell acute lymphoblastic leukemia(T-ALL)is a hematological tumor caused by the malignant transformation of immature T-cell progenitor cells.Emerging studies have stated that microRNAs(miRNAs)may play key roles in T-ALL progression.This study aimed to investigate the roles of miR-145-3p in T-ALL cell proliferation,invasion,and apoptosis with the involvement of the nuclear factor-kappaB(NF-κB)signaling pathway.T-ALL Jurkat cells were harvested,and the expression of miR-145-3p and NF-κB-p65 was measured.Gain-and loss-of-functions of miR-145-3p and NF-κB-p65 were performed to identify their roles in the biological behaviors of Jurkat cells,including proliferation,apoptosis,and invasion.Consequently,the current study demonstrated that miR-145-3p was down-regulated while NF-κB-p65 was up-regulated in Jurkat cells.miR-145-3p directly bound to the 3’untranslated region of NF-κB-p65.Over-expression of miR-145-3p inhibited Jurkat cell proliferation,invasion,and resistance to apoptosis,while over-expression of NF-κB-p65 presented opposite trends.Co-transfection of miR-145-3p and NF-κB-p65 promoted the malignant behaviors of Jurkat cells compared to miR-145-3p transfection alone,while it reduced these behaviors of Jurkat cells compared to NF-κB-p65 transfection alone.Taken together,this study provided evidence that miR-145-3p could suppress proliferation,invasion,and resistance to the death of T-ALL cells via inactivating the NF-κB signaling pathway.展开更多
In order to meet the pressing demand for wide-area communication required by the Global Energy Interconnection(GEI),accelerating the construction of satellite-terrestrial Integra怕d networks that can achieve network e...In order to meet the pressing demand for wide-area communication required by the Global Energy Interconnection(GEI),accelerating the construction of satellite-terrestrial Integra怕d networks that can achieve network extension and seamless global coverage has become the focus of power communication tech no logy development.In this study,we propose a satellite-terrestrial integrated network model that can support interconnection and interoperation on the IP layer between the satellite system and the怕rrestrial segment of the existing power communication system.First,the composition and function of the satellite-terrestrial collaborative network are explained.Then,the IP-based protocol stack is described,and a typical applicati on experime nt is con ducted to illustrate the particular process of this protocol stack.Fin ally,a use case of IP interconn ection that depends on GEO satellite communication is detailed.The experime ntal study has showed that the satellite-terrestrial collaborative network can efficiently support various IP applications for the GEI.展开更多
High-density and precise genetic linkage map is fundamental to detect quantitative trait locus (QTL) of agronomic and quality related traits in cultivated peanut (Arachis hypogaea L.). In this study, three linkage map...High-density and precise genetic linkage map is fundamental to detect quantitative trait locus (QTL) of agronomic and quality related traits in cultivated peanut (Arachis hypogaea L.). In this study, three linkage maps from three RIL (recombinant inbred line)populations were used to construct an integrated map. A total of 2,069 SSR and transposon markers were anchored on the high-density integrated map which covered 2,231.53 cM with 20 linkage groups. Totally, 92 QTLs correlating with pod length (PL), pod width (PW), hundred pods weight (HPW) and plant height (PH) from above RIL populations were mapped on it. Seven intervals were found to harbor QTLs controlling the same traits in different populations,including one for PL, three for PW, two for HPW, and one for PH. Besides, QTLs controlling different traits in different populations were found to be overlapped in four intervals.Interval on A05 contains 17 QTLs for different traits from two RIL populations. New markers were added to these intervals to detect QTLs with narrow confidential intervals.Results obtained in this study may facilitate future genomic researches such as QTL study, fine mapping, positional cloning and marker-assisted selection (MAS) in peanut.展开更多
Peanut or groundnut ( Arachis hypogaea L. ) is an important source of vegetable oil in the world. Genetic enhancement for high yield and high oil content has greatly contributed to enhanced pro-ductivit...Peanut or groundnut ( Arachis hypogaea L. ) is an important source of vegetable oil in the world. Genetic enhancement for high yield and high oil content has greatly contributed to enhanced pro-ductivity of peanut and increased supply of peanut oil. Further improving oil content and quality of peanut is still crucial for increasing productivity of arable land and market competitiveness of peanut oil. Based on investigation among the peanut germplasm accessions including wild Arachis species, the oil content could be as high as 65%. Heterosis has been observed for oil content in hybrids derived from diverse crossing parents. Segregates with enhanced oil content have been obtained by pyramiding different genes or alleles with major and minor additive effects. Improved testing techniques for oil content in breeding lines with reduced cost have accelerated breeding progress for high oil content. SSR markers associated with oil content have been identified by association and linkage analysis. The stability of oil content in peanut across seasons and locations is highly associated with cold tolerance, high nutrition efficiency and drought tolerance. Recent progress on improving fatty acids in particular marker assisted backcrossing breeding has contributed to higher quality peanut oil and other products. High oil peanut lines with im-proved resistance to aflatoxin production have been developed. The wild Arachis species would be of great value for peanut breeding in increasing oil content.展开更多
Iridium is a promising substrate for self-limiting growth of graphene. However, single-crystalline graphene can only be fabricated over 1120 K. The weak interaction between graphene and Ir makes it challenging to grow...Iridium is a promising substrate for self-limiting growth of graphene. However, single-crystalline graphene can only be fabricated over 1120 K. The weak interaction between graphene and Ir makes it challenging to grow graphene with a single orientation at a relatively low temperature. Here, we report the growth of large-scale, single-crystalline graphene on Ir(111) substrate at a temperature as low as 800 K using an oxygen-etching assisted epitaxial growth method. We firstly grow polycrystalline graphene on Ir. The subsequent exposure of oxygen leads to etching of the misaligned domains.Additional growth cycle, in which the leftover aligned domain serves as a nucleation center, results in a large-scale and single-crystalline graphene layer on Ir(111). Low-energy electron diffraction, scanning tunneling microscopy, and Raman spectroscopy experiments confirm the successful growth of large-scale and single-crystalline graphene. In addition, the fabricated single-crystalline graphene is transferred onto a SiO_2/Si substrate. Transport measurements on the transferred graphene show a carrier mobility of about 3300 cm^2·V^(-1)·s^(-1). This work provides a way for the synthesis of large-scale,high-quality graphene on weak-coupled metal substrates.展开更多
文摘Objective: To explore the effect of lower limb rehabilitation robot combined with task-oriented training on stroke patients and its influence on KFAROM score. Methods: 100 stroke patients with hemiplegia admitted to our hospital from January 2023 to December 2023 were randomly divided into two groups, the control group (50 cases) was given task-oriented training assisted by nurses, and the observation group (50 cases) was given lower limb rehabilitation robot with task-oriented training. Lower limb balance, lower limb muscle strength, motor function, ankle function, knee flexion range of motion and walking ability were observed. Results: After treatment, the scores of BBS, quadriceps femoris and hamstrings in the observation group were significantly higher than those in the control group (P Conclusion: In the clinical treatment of stroke patients, the combination of task-oriented training and lower limb rehabilitation robot can effectively improve the lower limb muscle strength, facilitate the recovery of balance function, and have a significant effect on the recovery of motor function, which can improve the walking ability of stroke patients and the range of motion of knee flexion, and achieve more ideal therapeutic effectiveness.
基金supported by National Natural Science Foundation of China [Grant numbers: 82272868 and 82173180]the Foundation of Joint Funds for the Innovation of Science and Technology, Fujian Province (No. 2020Y9126)Fujian Provincial Health Technology Project [Grant number: 2020CXA049]。
文摘Wnt signaling are critical pathway involved in organ development, tumorigenesis, and cancer progression. WNT7A, a member of the Wnt family, remains poorly understood in terms of its role and the underlying molecular mechanisms it entails in head and neck squamous cell carcinoma (HNSCC). According to the Cancer Genome Atlas (TCGA), transcriptome sequencing data of HNSCC, the expression level of WNT7A in tumors was found to be higher than in adjacent normal tissues, which was validated using Real-time RT-PCR and immunohistochemistry. Unexpectedly, overexpression of WNT7A did not activate the canonical Wnt-β-catenin pathway in HNSCC. Instead, our findings suggested that WNT7A potentially activated the FZD7/JAK1/STAT3 signaling pathway, leading to enhanced cell proliferation, self-renewal, and resistance to apoptosis. Furthermore, in a patient-derived xenograft (PDX) tumor model, high expression of WNT7A and phosphorylated STAT3 was observed, which positively correlated with tumor progression.These findings underscore the significance of WNT7A in HNSCC progression and propose the targeting of key molecules within the FZD7/JAK1/STAT3 pathway as a promising strategy for precise treatment of HNSCC.
基金supported by the National Natural Science Foundation of China(1127105011371183+2 种基金61403036)the Science and Technology Development Foundation of CAEP(2013A04030202013B0403068)
基金Supported by the National Natural Science Foundation of China(No.81371039)Shanghai Natural Science Foundation(No.18ZR1440200)
文摘AIM: To investigate the regulatory mechanism of glycogen synthase kinase 3β(GSK3β) in epithelialmesenchymal transition(EMT) process after proliferative vitreoretinopathy(PVR) induction. METHODS: Experimental PVR was induced by intravitreal injection of retinal pigment epithelium(RPE) cells in the eyes of rabbits. A PI3 K/Akt inhibitor(wortmannin) and a GSK3β inhibitor(Li Cl) were also injected at different time during PVR progress. Electroretinogram(ERG), ocular fundus photographs, and B-scan ultrasonography were used to observe the PVR progress. Western blot test on the extracted retina were performed at 1, 2, 4 wk. The expression of the mesenchymal marker vimentin was determined by immunohistochemistry. Toxicity of wortmannin and Li Cl were evaluated by ERG and Td Tmediated d UTP nick-end labeling(TUNEL) assay. The vitreous was also collected for metabolomic analysis. RESULTS: Experimental PVR could significantly lead to EMT, along with the suppressed expression of GSK3β and the activation of Wnt/β-catenin and PI3 K/Akt pathways. It was verified that upregulating the expression of GSK3β could effectively inhibit EMT process by suppressing Wnt/β-catenin and PI3 K/Akt pathways. CONCLUSION: GSK3β effectively inhibits EMT via the Wnt/β-catenin and PI3 K/Akt pathways. GSK3β may be regarded as a promising target of experimental PVR inhibition.
基金Projects (106112015CDJXZ138803,106112015CDJXY130003) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (51421001) supported by National Natural Science Foundation of China
文摘To develop an improved approach in achieving an excellent combination of high strength and ductility,the solutionized Al?Cu?Li plates were subjected to rolling at cryogenic and room temperatures,respectively,to a reduction of83%,followed by aging treatment at160°C.The results indicate that Al?Cu?Li alloys through cryogenic rolling followed by aging treatment possess better mechanical properties.Rolling at cryogenic temperature produces a high density of dislocations because of the suppression of dynamic recovery,which in turn promotes the precipitation of T1(Al2CuLi)precipitates during aging.Such high density of T1precipitates enable effective dislocation pinning,leading to an increase in strength and ductility.In contrast,room temperature rolled alloys after aging treatment exhibit lower strength and ductility due to low density of T1precipitates in the grain interior and high density of T1precipitates around subgrain boundaries.
文摘Background The reversibility of pulmonary arterial hypertension(PAH)in congenital heart disease(CHD)is of great importance for the operability of CHD.Proteomics analysis found that transgelin was significantly upregulated in the lung tissue of CHD-PAH patients,especially in the irreversible group.However,how exactly it participated in CHD-PAH development is unknown.
基金supported in part by the International Collaborative Project of the Shanghai Committee of Science and Technology(16510711100)National Natural Science Foundation of China(61603090,61806051)+2 种基金the Fundamental Research Funds for the Central Universities(2232017D-08,2232017D-13)Shanghai Sailing Program(17YF1426100)by FDCT(Fundo para o Desenvolvimento das Ciencias e da Tecnologia)(119/2014/A3)
文摘Multi-robot systems can be applied to patrol a concerned environment for security purposes.According to different goals,this work reviews the existing researches in a multi-robot patrolling field from the perspectives of regular and adversarial patrolling.Regular patrolling requires robots to visit important locations as frequently as possible and a series of deterministic strategies are proposed,while adversarial one focuses on unpredictable robots’moving patterns to maximize adversary detection probability.Under each category,a systematic survey is done including problem statements and modeling,patrolling objectives and evaluation criteria,and representative patrolling strategies and approaches.Existing problems and open questions are presented accordingly.
文摘BACKGROUND Purpura nephritis,also called Henoch-Schönlein purpura nephritis,is a systemic disease with small dead vasculitis as the main pathological change.AIM To observe the influence of transitional nursing activities on the compliance behaviors and disease knowledge of children with purpura nephritis.METHODS A total of 82 children with purpura nephritis were included and divided into a general nursing group(41 children)and transitional nursing group(41 children)using the envelope method.The general nursing group received routine nursing care,while the transitional nursing group received transitional nursing care.The behaviors,knowledge of the disease,and self-management ability of the two groups were evaluated after nursing care was provided.RESULTS The scores of four items(self-care ability,self-responsibility,health knowledge level,and self-concept)in the transitional nursing group were significantly higher than those in the general nursing group.CONCLUSION Transitional nursing can directly improve the disease knowledge level and selfmanagement ability of children with purpura nephritis and effectively reduce complications.
基金supported by the National Natural Science Foundation of China(61805287)Natural Science Foundation of Hunan Province,China(2018JJ3632 and 2019JJ50824)Fundamental Research Funds for State Key Laboratory of the Discovery and Development of Novel Pesticide,Shenyang Sinochem Agrochemicals Research and Development Co.,Ltd.(2018NYRD02)。
文摘Carbon dots(CDs)have become popular nanomaterials in biomedical and agricultural fields.Herein we synthesized multifunctional CDs which showed anti-cancer and anti-fungal activities.The low cytotoxicity,stable fluorescence and high photothermal conversion efficiency enable the CDs with imagingguided photothermal therapy.The CDs also exhibited intrinsic anti-fungal activity even at a low concentration,i.e.,40 mg·L^(-1) of CDs induced 20%mortality in cucumber downy mildew.Moreover,the largeπ-conjugated nanostructure and the richness of amino and hydroxyl groups make them a powerful delivery platform for flumorph(a fungicide)with a high loading efficiency of 47.18%.Meanwhile,the heat converted from the light can accelerate the release of flumorph from CDs,and thus efficiently kill fungus.
基金the National Key R&D Program of China(2017YF0505200 to H.Sun)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA 20050203 to H.Sun)+1 种基金the Key Program of the National Natural Science Foundation of China(U1802232 to H.Sun)National Natural Science Foundation of China(grant 31700284 to D.L.Peng,31670206 to Z.M.Li and 31900185 to L.E.Yang)。
文摘Primula beesiana Forr.is an attractive wildflower endemically distributed in the wet habitats of subalpine/alpine regions of southwestern China.This study is an attempt to understand how this plant adapts to wet habitats and high altitudes.Specifically,we examined the effects of cold stratification,light,GA3,KNO3,and temperature on P.beesiana seed germination.KNO3 and GA3 increased germination percentage and germination rate compared to control treatments at 15/5 and 25/15℃.Untreated seeds germinated well(>80%)at higher temperatures(20,25 and 28℃),whereas at lower(5,10 and15℃)and extremely high temperatures(30 and 32℃)germination decreased significantly.However,after cold stratification(4-16 weeks),the germination percentage of P.beesiana seeds at low temperatures(5-15℃)and the germination rate at high temperatures(30℃)increased significantly,suggesting that P.beesiana has type 3 non-deep physiological dormancy.The base temperature and thermal time for germination decreased in seeds that were cold stratified for 16 weeks.Cold-stratified seeds incubated at fluctuating temperatures(especially at 15/5℃)had significantly high germination percentages and germination rates in light,but not in dark,compared to the corresponding constant temperature(10℃).Seeds had a strict light requirement at all temperatures,even after experiencing cold stratification;however,the combinations of cold stratification and fluctuating temperature increased germination when seeds were transferred from dark to light.Such dormancy/germination responses to light and temperature are likely mechanisms that ensure germination occurs only in spring and at/near the soil surface,thus avoiding seedling death by freezing,inundation and/or germination deep in the soil.
基金The National Program for Crop Germplasm Protection of China(19210163)National Natural Science Foundation of China(32172006)+2 种基金The Plant Germplasm Resources Sharing Platform(NICGR2021-016)National Peanut Industry Technology System Construction(CARS-13)Central Scientific Institution Basal Research Fund(CAAS-OCRI-ZDRW-202101)。
文摘Peanut(Arachis hypogaea L.)is an important oil and cash crop in the world.Peanut germplasm collected in China are abundant,which provides important material guarantee for peanut breeding and industrial development.Here,the safe conservation technology and indicators of peanut germplasm resources in the Oil Crops Middleterm Genebank of China were expounded from three processes of storage,monitoring,reproduction and renewal.We summarized and reviewed the situation of conservation and utilization of peanut germplasm resources in the Middle-term Genebank in the past 20 years.The future research direction of peanut resources in the Oil Crops Middle-term Genebank of China is prospected.
基金supported by the National Natural Science Foundation of China,No.31500836,81671288the Natural Science Foundation of Anhui Province of China,No.1608085QH176
文摘Limited by the tiny structure of axons,the effects of these axonal hyperpolarizing inputs on neuronal activity have not been directly elucidated.Here,we imitated these processes by simultaneously recording the activities of the somas and proximal axons of cortical pyramidal neurons.We found that spikes and subthreshold potentials propagate between somas and axons with high fidelity.Furthermore,inhibitory inputs on axons have opposite effects on neuronal activity according to their temporal integration with upstream signals.Concurrent with somatic depolarization,inhibitory inputs on axons decrease neuronal excitability and impede spike generation.In addition,following action potentials,inhibitory inputs on an axon increase neuronal spike capacity and improve spike precision.These results indicate that inhibitory inputs on proximal axons have dual regulatory functions in neuronal activity(suppression or facilitation)according to neuronal network patterns.
基金the National Natural Science Foundation of China(31870319,31871666,and 31801403)China Agriculture Research System(CARS-13)+2 种基金National Program for Crop Germplasm Protection of China(2020NWB033)National Crop Germplasm Resources Center(NCGRC-2020-036)Central Public-interest Scientific Institution Basal Research Fund(Y2021CG05)。
文摘Peanut is a major oilseed and food legume.Shelling percentage(SP),closely associated with seed yield,is a trait whose improvement is a major goal of peanut breeding.In this study,a mapping population(Xuhua 13×Zhonghua 6)was used to map quantitative trait loci(QTL)controlling SP in four environments.Two stable major QTL for SP were mapped on both SSR-and SNP-based genetic maps.q SPA07.1 on chromosome A07 explained up to 31.7%of phenotypic variation,and q SPA08.2 on chromosome A08 explained up to 10.8%.Favorable alleles of q SPA07.1 and q SPA08.2 were derived from the female and male parents,respectively.Eight recombinant inbred lines(RILs)carrying both favorable alleles showed superiority in SP over the two parents in all environmental trials.A combination of the two favorable alleles using the linked markers was verified to increase SP by~5%in the RIL population and by~3%SP in diverse peanut cultivars.q SPA07.1 and q SPA08.2 were delimited to respectively a 0.73-Mb interval harboring 96 genes and a 3.93-Mb interval harboring 238 genes.Respectively five and eight genes with high expression in pods,including enzymes and transcription factors,were assigned as candidate genes for q SPA07.1 and q SPA08.2.These consistent major QTL provide an opportunity for fine mapping of genes controlling SP,and the linked markers may be useful for genetic improvement of SP in peanut.
基金funded by the National Natural Science Foundation of China(31571722 and 31971984).
文摘IQ67-domain(IQD)proteins function in plant defense and in organ development.The mechanisms by which they influence cotton fiber development are unknown.In the present study,GhIQD10 was expressed mainly in the transition period of cotton fiber development,and GhIQD10-overexpression lines showed shorter fibers.GhIQD10 interacted with GhCaM7 and the interaction was inhibited by Ca^(2+).In in vitro ovule culture,Ca^(2+)rescued the shorter-fiber phenotype of GhIQD10-overexpression lines,which were insensitive to the Ca^(2+)channel inhibitor verapamil and the Ca^(2+)pool release channel blocker 2-aminoethoxydiphenyl borate.We conclude that GhIQD10 affects cotton fiber elongation via Ca^(2+)signaling by interacting with GhCaM7.Brassinosteroid(BR)biosynthesis and signaling genes were up-regulated in GhIQD10-overexpression lines.Fiber development in these lines was not affected by epibrassinolide or the BR biosynthesis inhibitor brassinozole,indicating that the influence of GhIQD10 on fiber elongation was not associated with BR.
基金funded by the National Natural Science Foundation of China(42076217,41976205)Shandong Provincial Taishan Scholars Special Expert Project (ts201712079)+1 种基金Marine Geological Survey Program (DD20190231)Shandong Natural Science Foundation(ZR2017BD024)。
文摘Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are investigated in a fluid circulation system with a total length of 39 m.A 9-m section pipe is transparent consisted of two complete rectangular loops.By means of pressurization with gas-saturated water,the system can gradually reach the equilibrium conditions.The result shows that the hydrates are delayed to appear as floccules or thin films covering the methane bubbles.When the circulation velocity is below 750 rpm,hydrate is finally deposited as a“hydrate bed”at upmost of inner wall,narrowing the flow channel of the pipeline.Nevertheless,no plugging is observed during all the experimental runs.The five stages of hydrate deposition are proposed based on the experimental results.It is also revealed that a higher driving pressure is needed at a lower flow rate.The driving force of hydrate formation from gas and water obtained by melting hydrate is higher than that from fresh water with no previous hydrate history.The authors hope that this work will be beneficial for the flow assurance of the following oceanic field hydrate recovery trials.
文摘T-cell acute lymphoblastic leukemia(T-ALL)is a hematological tumor caused by the malignant transformation of immature T-cell progenitor cells.Emerging studies have stated that microRNAs(miRNAs)may play key roles in T-ALL progression.This study aimed to investigate the roles of miR-145-3p in T-ALL cell proliferation,invasion,and apoptosis with the involvement of the nuclear factor-kappaB(NF-κB)signaling pathway.T-ALL Jurkat cells were harvested,and the expression of miR-145-3p and NF-κB-p65 was measured.Gain-and loss-of-functions of miR-145-3p and NF-κB-p65 were performed to identify their roles in the biological behaviors of Jurkat cells,including proliferation,apoptosis,and invasion.Consequently,the current study demonstrated that miR-145-3p was down-regulated while NF-κB-p65 was up-regulated in Jurkat cells.miR-145-3p directly bound to the 3’untranslated region of NF-κB-p65.Over-expression of miR-145-3p inhibited Jurkat cell proliferation,invasion,and resistance to apoptosis,while over-expression of NF-κB-p65 presented opposite trends.Co-transfection of miR-145-3p and NF-κB-p65 promoted the malignant behaviors of Jurkat cells compared to miR-145-3p transfection alone,while it reduced these behaviors of Jurkat cells compared to NF-κB-p65 transfection alone.Taken together,this study provided evidence that miR-145-3p could suppress proliferation,invasion,and resistance to the death of T-ALL cells via inactivating the NF-κB signaling pathway.
基金supported by the State Grid Science and Technology Project (No. 5455HT160004)
文摘In order to meet the pressing demand for wide-area communication required by the Global Energy Interconnection(GEI),accelerating the construction of satellite-terrestrial Integra怕d networks that can achieve network extension and seamless global coverage has become the focus of power communication tech no logy development.In this study,we propose a satellite-terrestrial integrated network model that can support interconnection and interoperation on the IP layer between the satellite system and the怕rrestrial segment of the existing power communication system.First,the composition and function of the satellite-terrestrial collaborative network are explained.Then,the IP-based protocol stack is described,and a typical applicati on experime nt is con ducted to illustrate the particular process of this protocol stack.Fin ally,a use case of IP interconn ection that depends on GEO satellite communication is detailed.The experime ntal study has showed that the satellite-terrestrial collaborative network can efficiently support various IP applications for the GEI.
文摘High-density and precise genetic linkage map is fundamental to detect quantitative trait locus (QTL) of agronomic and quality related traits in cultivated peanut (Arachis hypogaea L.). In this study, three linkage maps from three RIL (recombinant inbred line)populations were used to construct an integrated map. A total of 2,069 SSR and transposon markers were anchored on the high-density integrated map which covered 2,231.53 cM with 20 linkage groups. Totally, 92 QTLs correlating with pod length (PL), pod width (PW), hundred pods weight (HPW) and plant height (PH) from above RIL populations were mapped on it. Seven intervals were found to harbor QTLs controlling the same traits in different populations,including one for PL, three for PW, two for HPW, and one for PH. Besides, QTLs controlling different traits in different populations were found to be overlapped in four intervals.Interval on A05 contains 17 QTLs for different traits from two RIL populations. New markers were added to these intervals to detect QTLs with narrow confidential intervals.Results obtained in this study may facilitate future genomic researches such as QTL study, fine mapping, positional cloning and marker-assisted selection (MAS) in peanut.
文摘Peanut or groundnut ( Arachis hypogaea L. ) is an important source of vegetable oil in the world. Genetic enhancement for high yield and high oil content has greatly contributed to enhanced pro-ductivity of peanut and increased supply of peanut oil. Further improving oil content and quality of peanut is still crucial for increasing productivity of arable land and market competitiveness of peanut oil. Based on investigation among the peanut germplasm accessions including wild Arachis species, the oil content could be as high as 65%. Heterosis has been observed for oil content in hybrids derived from diverse crossing parents. Segregates with enhanced oil content have been obtained by pyramiding different genes or alleles with major and minor additive effects. Improved testing techniques for oil content in breeding lines with reduced cost have accelerated breeding progress for high oil content. SSR markers associated with oil content have been identified by association and linkage analysis. The stability of oil content in peanut across seasons and locations is highly associated with cold tolerance, high nutrition efficiency and drought tolerance. Recent progress on improving fatty acids in particular marker assisted backcrossing breeding has contributed to higher quality peanut oil and other products. High oil peanut lines with im-proved resistance to aflatoxin production have been developed. The wild Arachis species would be of great value for peanut breeding in increasing oil content.
基金Project supported by the National Key Research&Development Program of China(Grant Nos.2016YFA0202300 and 2018YFA0305800)the National Natural Science Foundation of China(Grant Nos.61888102 and 51872284)+2 种基金the Chinese Academy of Sciences(CAS)Pioneer Hundred Talents Program,the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDB30000000 and XDB28000000)Beijing Nova Program,China(Grant No.Z181100006218023)the University of Chinese Academy of Sciences
文摘Iridium is a promising substrate for self-limiting growth of graphene. However, single-crystalline graphene can only be fabricated over 1120 K. The weak interaction between graphene and Ir makes it challenging to grow graphene with a single orientation at a relatively low temperature. Here, we report the growth of large-scale, single-crystalline graphene on Ir(111) substrate at a temperature as low as 800 K using an oxygen-etching assisted epitaxial growth method. We firstly grow polycrystalline graphene on Ir. The subsequent exposure of oxygen leads to etching of the misaligned domains.Additional growth cycle, in which the leftover aligned domain serves as a nucleation center, results in a large-scale and single-crystalline graphene layer on Ir(111). Low-energy electron diffraction, scanning tunneling microscopy, and Raman spectroscopy experiments confirm the successful growth of large-scale and single-crystalline graphene. In addition, the fabricated single-crystalline graphene is transferred onto a SiO_2/Si substrate. Transport measurements on the transferred graphene show a carrier mobility of about 3300 cm^2·V^(-1)·s^(-1). This work provides a way for the synthesis of large-scale,high-quality graphene on weak-coupled metal substrates.