Fracture propagation in shale under in situ conditions is a critical but poorly understood mechanical process in hydraulic fracturing for deep shale gas reservoirs. To address this, hydraulic fracturing experiments we...Fracture propagation in shale under in situ conditions is a critical but poorly understood mechanical process in hydraulic fracturing for deep shale gas reservoirs. To address this, hydraulic fracturing experiments were conducted on hollow double-wing crack specimens of the Longmaxi shale under conditions simulating the ground surface(confining pressure σ_(cp)=0, room temperature(Tr)) and at depths of 1600 m(σ_(cp)=40 MPa, Ti=70 ℃) and 3300 m(σ_(cp)=80 MPa, high temperature Ti=110 ℃) in the study area.High in situ stress was found to significantly increase fracture toughness through constrained microcracking and particle frictional bridging mechanisms. Increasing the temperature enhances rather than weakens the fracture resistance because it increases the grain debonding length, which dissipates more plastic energy and enlarges grains to close microdefects and generate compressive stress to inhibit microcracking. Interestingly, the fracture toughness anisotropy in the shale was found to be nearly constant across burial depths, despite reported variations with increasing confining pressure. Heated water was not found to be as important as the in situ environment in influencing shale fracture. These findings emphasize the need to test the fracture toughness of deep shales under coupled in situ stress and temperature conditions rather than focusing on either in situ stress or temperature alone.展开更多
At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production ...At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production environments,there are a large number of KGs with a small number of entities and relations,which are called sparse KGs.Limited by the performance of knowledge extraction methods or some other reasons(some common-sense information does not appear in the natural corpus),the relation between entities is often incomplete.To solve this problem,a method of the graph neural network and information enhancement is proposed.The improved method increases the mean reciprocal rank(MRR)and Hit@3 by 1.6%and 1.7%,respectively,when the sparsity of the FB15K-237 dataset is 10%.When the sparsity is 50%,the evaluation indexes MRR and Hit@10 are increased by 0.8%and 1.8%,respectively.展开更多
We investigate the behavior of edge modes in the presence of different edge terminations and long-range(LR)hopping.Here,we mainly focus on such model crystals with two different types of structures(type I:“…-P-Q-P-Q...We investigate the behavior of edge modes in the presence of different edge terminations and long-range(LR)hopping.Here,we mainly focus on such model crystals with two different types of structures(type I:“…-P-Q-P-Q-…”and type II:“…=P-Q=P-Q=…”),where P and Q represent crystal lines(CLs),while the symbols“-”and“=”denote the distance between the nearest neighbor(NN)CLs.Based on the lattice model Hamiltonian with LR hopping,the existence of edge modes is determined analytically by using the transfer matrix method(TMM)when different edge terminals are taken into consideration.Our findings are consistent with the numerical results obtained by the exact diagonalization method.We also notice that edge modes can exhibit different behaviors under different edge terminals.Our result is helpful in solving novel edge modes in honeycomb crystalline graphene and transition metal dichalcogenides with different edge terminals.展开更多
With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels...With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels,due to its high gravimetric energy density(142 MJ kg^(-1)),high abundance(H_(2)O),and environmentalfriendliness.However,due to its low volume density,effective and safe hydrogen storage techniques are now becoming the bottleneck for the"hydrogen economy".Under such a circumstance,Mg-based hydrogen storage materials garnered tremendous interests due to their high hydrogen storage capacity(~7.6 wt%for MgH_(2)),low cost,and excellent reversibility.However,the high thermodynamic stability(ΔH=-74.7 kJ mol^(-1)H_(2))and sluggish kinetics result in a relatively high desorption temperature(>300℃),which severely restricts widespread applications of MgH_(2).Nano-structuring has been proven to be an effective strategy that can simultaneously enhance the ab/de-sorption thermodynamic and kinetic properties of MgH_(2),possibly meeting the demand for rapid hydrogen desorption,economic viability,and effective thermal management in practical applications.Herein,the fundamental theories,recent advances,and practical applications of the nanostructured Mg-based hydrogen storage materials are discussed.The synthetic strategies are classified into four categories:free-standing nano-sized Mg/MgH_(2)through electrochemical/vapor-transport/ultrasonic methods,nanostructured Mg-based composites via mechanical milling methods,construction of core-shell nano-structured Mg-based composites by chemical reduction approaches,and multi-dimensional nano-sized Mg-based heterostructure by nanoconfinement strategy.Through applying these strategies,near room temperature ab/de-sorption(<100℃)with considerable high capacity(>6 wt%)has been achieved in nano Mg/MgH_(2)systems.Some perspectives on the future research and development of nanostructured hydrogen storage materials are also provided.展开更多
To investigate the influence of unloading effect of a circular tunnel face on rockburst process,by innovatively combining rock drilling unloading devices and triaxial systems,the strain rockburst simulation under the ...To investigate the influence of unloading effect of a circular tunnel face on rockburst process,by innovatively combining rock drilling unloading devices and triaxial systems,the strain rockburst simulation under the entire stress path of“high initial stressþinternal unloadingþstress adjustment”(HUS test)was realized for the intact cubic red sandstone samples(100 mm×100 mm×100 mm).Comparative tests were conducted on cubic red sandstone samples with prefabricated circular holes(425 mm)under the stress path of“prefabricated circular hole+þhigh initial stress+stress adjustment”(PHS test),thereby highlighting the influence of internal unloading on rockburst failure.The test results revealed that with an increase in vertical stress,the sidewalls in both the HUS and PHS tests suffered strain rockburst failure.Compared with the PHS test,the initial failure stress in the HUS test is lower,and it is easier to induce sidewall rockbursts.This indicates that the internal unloading influences the sidewall failure,causing an obvious strength-weakening effect,which becomes more significant with an increase in buried depth.The strain rockburst failure was more severe in the HUS test owing to the influence of internal unloading.V-shaped rockburst pits were formed in the HUS tests,whereas in the PHS test,arcshaped rockburst pits were produced.It was also found that strain rockburst failure may occur only when the rock has a certain degree of rockburst proneness.展开更多
Given the rapid changes in social structure(urbanization),economic structure(industrialization),and demographic structure(population aging)in China,cancer has become a major public health problem1.Extensive evidence h...Given the rapid changes in social structure(urbanization),economic structure(industrialization),and demographic structure(population aging)in China,cancer has become a major public health problem1.Extensive evidence has indicated that screening can decrease cancer mortality,particularly among high-risk groups,and several representative national and regional cancer screening programs have been launched in China to cope with the increasing burden of cancer.展开更多
Proteomic characterization of plasma is critical for the development of novel pharmacodynamic biomarkers.However,the vast dynamic range renders the profiling of proteomes extremely challenging.Here,we synthesized zeol...Proteomic characterization of plasma is critical for the development of novel pharmacodynamic biomarkers.However,the vast dynamic range renders the profiling of proteomes extremely challenging.Here,we synthesized zeolite NaY and developed a simple and rapid method to achieve comprehensive and deep profiling of the plasma proteome using the plasma protein corona formed on zeolite NaY.Specifically,zeolite NaY and plasma were co-incubated to form plasma protein corona on zeolite NaY(NaY-PPC),followed by conventional protein identification using liquid chromatography-tandem mass spectrometry.NaY was able to significantly enhance the detection of low-abundance plasma proteins,minimizing the“masking”effect caused by high-abundance proteins.The relative abundance of middleand low-abundance proteins increased substantially from 2.54%to 54.41%,and the top 20 highabundance proteins decreased from 83.63%to 25.77%.Notably,our method can quantify approximately 4000 plasma proteins with sensitivity up to pg/mL,compared to only about 600 proteins identified from untreated plasma samples.A pilot study based on plasma samples from 30 lung adenocarcinoma patients and 15 healthy subjects demonstrated that our method could successfully distinguish between healthy and disease states.In summary,this work provides an advantageous tool for the exploration of plasma proteomics and its translational applications.展开更多
MgH_(2) is a promising high-capacity solid-state hydrogen storage material,while its application is greatly hindered by the high desorption temperature and sluggish kinetics.Herein,intertwined 2D oxygen vacancy-rich V...MgH_(2) is a promising high-capacity solid-state hydrogen storage material,while its application is greatly hindered by the high desorption temperature and sluggish kinetics.Herein,intertwined 2D oxygen vacancy-rich V_(2)O_(5) nanosheets(H-V_(2)O_(5))are specifically designed and used as catalysts to improve the hydrogen storage properties of MgH_(2).The as-prepared MgH_(2)-H-V_(2)O_(5) composites exhibit low desorption temperatures(Tonset=185℃)with a hydrogen capacity of 6.54 wt%,fast kinetics(Ea=84.55±1.37 kJ mol^(-1) H_(2) for desorption),and long cycling stability.Impressively,hydrogen absorption can be achieved at a temperature as low as 30℃ with a capacity of 2.38 wt%within 60 min.Moreover,the composites maintain a capacity retention rate of~99%after 100 cycles at 275℃.Experimental studies and theoretical calculations demonstrate that the in-situ formed VH_(2)/V catalysts,unique 2D structure of H-V_(2)O_(5) nanosheets,and abundant oxygen vacancies positively contribute to the improved hydrogen sorption properties.Notably,the existence of oxygen vacancies plays a double role,which could not only directly accelerate the hydrogen ab/de-sorption rate of MgH_(2),but also indirectly affect the activity of the catalytic phase VH_(2)/V,thereby further boosting the hydrogen storage performance of MgH_(2).This work highlights an oxygen vacancy excited“hydrogen pump”effect of VH_(2)/V on the hydrogen sorption of Mg/MgH_(2).The strategy developed here may pave a new way toward the development of oxygen vacancy-rich transition metal oxides catalyzed hydride systems.展开更多
High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion te...High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies.Herein,we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER)for alkaline electrolysis,which yields current density of 10 mA cm^(-2)at an overpotential of 215 mV in 0.1 M KOH electrolyte.The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity.Raman spectra revealed that the catalyst underwent structure reconstruction during OER,evolving into oxyhydroxide,which was the active site proceeding OER in alkaline electrolyte.In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst.This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability.These findings provide promising strategies for the rational design of nonnoble metal OER catalysts.展开更多
基金supported by the National Natural Science Foundation of China(No.12172240).
文摘Fracture propagation in shale under in situ conditions is a critical but poorly understood mechanical process in hydraulic fracturing for deep shale gas reservoirs. To address this, hydraulic fracturing experiments were conducted on hollow double-wing crack specimens of the Longmaxi shale under conditions simulating the ground surface(confining pressure σ_(cp)=0, room temperature(Tr)) and at depths of 1600 m(σ_(cp)=40 MPa, Ti=70 ℃) and 3300 m(σ_(cp)=80 MPa, high temperature Ti=110 ℃) in the study area.High in situ stress was found to significantly increase fracture toughness through constrained microcracking and particle frictional bridging mechanisms. Increasing the temperature enhances rather than weakens the fracture resistance because it increases the grain debonding length, which dissipates more plastic energy and enlarges grains to close microdefects and generate compressive stress to inhibit microcracking. Interestingly, the fracture toughness anisotropy in the shale was found to be nearly constant across burial depths, despite reported variations with increasing confining pressure. Heated water was not found to be as important as the in situ environment in influencing shale fracture. These findings emphasize the need to test the fracture toughness of deep shales under coupled in situ stress and temperature conditions rather than focusing on either in situ stress or temperature alone.
基金supported by the Sichuan Science and Technology Program under Grants No.2022YFQ0052 and No.2021YFQ0009.
文摘At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production environments,there are a large number of KGs with a small number of entities and relations,which are called sparse KGs.Limited by the performance of knowledge extraction methods or some other reasons(some common-sense information does not appear in the natural corpus),the relation between entities is often incomplete.To solve this problem,a method of the graph neural network and information enhancement is proposed.The improved method increases the mean reciprocal rank(MRR)and Hit@3 by 1.6%and 1.7%,respectively,when the sparsity of the FB15K-237 dataset is 10%.When the sparsity is 50%,the evaluation indexes MRR and Hit@10 are increased by 0.8%and 1.8%,respectively.
基金supported by the National Natural Science Foundation of China(Grant No.11847061)Domestic Visiting Program for Young and Middle-aged Teachers in Shanghai Universities.
文摘We investigate the behavior of edge modes in the presence of different edge terminations and long-range(LR)hopping.Here,we mainly focus on such model crystals with two different types of structures(type I:“…-P-Q-P-Q-…”and type II:“…=P-Q=P-Q=…”),where P and Q represent crystal lines(CLs),while the symbols“-”and“=”denote the distance between the nearest neighbor(NN)CLs.Based on the lattice model Hamiltonian with LR hopping,the existence of edge modes is determined analytically by using the transfer matrix method(TMM)when different edge terminals are taken into consideration.Our findings are consistent with the numerical results obtained by the exact diagonalization method.We also notice that edge modes can exhibit different behaviors under different edge terminals.Our result is helpful in solving novel edge modes in honeycomb crystalline graphene and transition metal dichalcogenides with different edge terminals.
基金support from the National Key Research&Development Program(2022YFB3803700)of ChinaNational Natural Science Foundation(No.52171186)financial support from the Center of Hydrogen Science,Shanghai Jiao Tong University。
文摘With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels,due to its high gravimetric energy density(142 MJ kg^(-1)),high abundance(H_(2)O),and environmentalfriendliness.However,due to its low volume density,effective and safe hydrogen storage techniques are now becoming the bottleneck for the"hydrogen economy".Under such a circumstance,Mg-based hydrogen storage materials garnered tremendous interests due to their high hydrogen storage capacity(~7.6 wt%for MgH_(2)),low cost,and excellent reversibility.However,the high thermodynamic stability(ΔH=-74.7 kJ mol^(-1)H_(2))and sluggish kinetics result in a relatively high desorption temperature(>300℃),which severely restricts widespread applications of MgH_(2).Nano-structuring has been proven to be an effective strategy that can simultaneously enhance the ab/de-sorption thermodynamic and kinetic properties of MgH_(2),possibly meeting the demand for rapid hydrogen desorption,economic viability,and effective thermal management in practical applications.Herein,the fundamental theories,recent advances,and practical applications of the nanostructured Mg-based hydrogen storage materials are discussed.The synthetic strategies are classified into four categories:free-standing nano-sized Mg/MgH_(2)through electrochemical/vapor-transport/ultrasonic methods,nanostructured Mg-based composites via mechanical milling methods,construction of core-shell nano-structured Mg-based composites by chemical reduction approaches,and multi-dimensional nano-sized Mg-based heterostructure by nanoconfinement strategy.Through applying these strategies,near room temperature ab/de-sorption(<100℃)with considerable high capacity(>6 wt%)has been achieved in nano Mg/MgH_(2)systems.Some perspectives on the future research and development of nanostructured hydrogen storage materials are also provided.
基金This work was supported by the National Natural Science Foundation of China(Grant No.42077244)the Open Research Fund of State Key Laboratory of Deep Earth Science and Engineering(Sichuan University)(Grant No.DESE 202201)the Fundamental Research Funds for the Central Universities(Grant No.2242022k30054).
文摘To investigate the influence of unloading effect of a circular tunnel face on rockburst process,by innovatively combining rock drilling unloading devices and triaxial systems,the strain rockburst simulation under the entire stress path of“high initial stressþinternal unloadingþstress adjustment”(HUS test)was realized for the intact cubic red sandstone samples(100 mm×100 mm×100 mm).Comparative tests were conducted on cubic red sandstone samples with prefabricated circular holes(425 mm)under the stress path of“prefabricated circular hole+þhigh initial stress+stress adjustment”(PHS test),thereby highlighting the influence of internal unloading on rockburst failure.The test results revealed that with an increase in vertical stress,the sidewalls in both the HUS and PHS tests suffered strain rockburst failure.Compared with the PHS test,the initial failure stress in the HUS test is lower,and it is easier to induce sidewall rockbursts.This indicates that the internal unloading influences the sidewall failure,causing an obvious strength-weakening effect,which becomes more significant with an increase in buried depth.The strain rockburst failure was more severe in the HUS test owing to the influence of internal unloading.V-shaped rockburst pits were formed in the HUS tests,whereas in the PHS test,arcshaped rockburst pits were produced.It was also found that strain rockburst failure may occur only when the rock has a certain degree of rockburst proneness.
基金supported by grants from the National Key Research and Development Program of China(Grant No.2021YFC2500400)the National Natural Science Foundation of China(Grant Nos.81974439&82204121)+2 种基金the Beijing-Tianjin-Hebei Basic Research Cooperation Special Project(20JCZXJC00090)the Tianjin Health Committee Foundation(Grant No.TJWJ2021MS008)the Tianjin Key Medical Discipline(Specialty)Construction Project(Grant No.TJYXZDXK-009A).
文摘Given the rapid changes in social structure(urbanization),economic structure(industrialization),and demographic structure(population aging)in China,cancer has become a major public health problem1.Extensive evidence has indicated that screening can decrease cancer mortality,particularly among high-risk groups,and several representative national and regional cancer screening programs have been launched in China to cope with the increasing burden of cancer.
基金supported by the National Natural Science Foundation of China(Grant No:51773151)。
文摘Proteomic characterization of plasma is critical for the development of novel pharmacodynamic biomarkers.However,the vast dynamic range renders the profiling of proteomes extremely challenging.Here,we synthesized zeolite NaY and developed a simple and rapid method to achieve comprehensive and deep profiling of the plasma proteome using the plasma protein corona formed on zeolite NaY.Specifically,zeolite NaY and plasma were co-incubated to form plasma protein corona on zeolite NaY(NaY-PPC),followed by conventional protein identification using liquid chromatography-tandem mass spectrometry.NaY was able to significantly enhance the detection of low-abundance plasma proteins,minimizing the“masking”effect caused by high-abundance proteins.The relative abundance of middleand low-abundance proteins increased substantially from 2.54%to 54.41%,and the top 20 highabundance proteins decreased from 83.63%to 25.77%.Notably,our method can quantify approximately 4000 plasma proteins with sensitivity up to pg/mL,compared to only about 600 proteins identified from untreated plasma samples.A pilot study based on plasma samples from 30 lung adenocarcinoma patients and 15 healthy subjects demonstrated that our method could successfully distinguish between healthy and disease states.In summary,this work provides an advantageous tool for the exploration of plasma proteomics and its translational applications.
基金the support from the National Key Research&Development Program(2022YFB3803700)of ChinaNational Natural Science Foundation(No.52171186)the financial support from the Center of Hydrogen Science,Shanghai Jiao Tong University。
文摘MgH_(2) is a promising high-capacity solid-state hydrogen storage material,while its application is greatly hindered by the high desorption temperature and sluggish kinetics.Herein,intertwined 2D oxygen vacancy-rich V_(2)O_(5) nanosheets(H-V_(2)O_(5))are specifically designed and used as catalysts to improve the hydrogen storage properties of MgH_(2).The as-prepared MgH_(2)-H-V_(2)O_(5) composites exhibit low desorption temperatures(Tonset=185℃)with a hydrogen capacity of 6.54 wt%,fast kinetics(Ea=84.55±1.37 kJ mol^(-1) H_(2) for desorption),and long cycling stability.Impressively,hydrogen absorption can be achieved at a temperature as low as 30℃ with a capacity of 2.38 wt%within 60 min.Moreover,the composites maintain a capacity retention rate of~99%after 100 cycles at 275℃.Experimental studies and theoretical calculations demonstrate that the in-situ formed VH_(2)/V catalysts,unique 2D structure of H-V_(2)O_(5) nanosheets,and abundant oxygen vacancies positively contribute to the improved hydrogen sorption properties.Notably,the existence of oxygen vacancies plays a double role,which could not only directly accelerate the hydrogen ab/de-sorption rate of MgH_(2),but also indirectly affect the activity of the catalytic phase VH_(2)/V,thereby further boosting the hydrogen storage performance of MgH_(2).This work highlights an oxygen vacancy excited“hydrogen pump”effect of VH_(2)/V on the hydrogen sorption of Mg/MgH_(2).The strategy developed here may pave a new way toward the development of oxygen vacancy-rich transition metal oxides catalyzed hydride systems.
基金the staff at Beamline (BL08U1-A and BL11B)of the Shanghai Synchrotron Radiation Facility (SSRF)the support from the National Key Research&Development Program of China (2022YFB3803700)+2 种基金the National Natural Science Foundation of China (52171186)the support through the Overseas Outstanding Youth Fund and Shanghai Pujiang Talent Project (21PJ1408500)the financial support from the Center of Hydrogen Science,Shanghai Jiao Tong University。
文摘High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies.Herein,we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER)for alkaline electrolysis,which yields current density of 10 mA cm^(-2)at an overpotential of 215 mV in 0.1 M KOH electrolyte.The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity.Raman spectra revealed that the catalyst underwent structure reconstruction during OER,evolving into oxyhydroxide,which was the active site proceeding OER in alkaline electrolyte.In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst.This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability.These findings provide promising strategies for the rational design of nonnoble metal OER catalysts.