期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High-Performanceα-Diimine Nickel Complexes for Facile Access of PE Elastomers with Exceptional Material Properties
1
作者 li-dong qin Xin-Yu Wang +5 位作者 Qaiser Mahmood Zhi-Xin Yu Yi-Zhou Wang Song Zou Tong-Ling Liang Wen-Hua Sun 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第5期620-635,I0008,共17页
For practicable elastomeric polyethylene,achieving high catalyst thermal stability and activity,along with precise control of polymer properties such as branching density,molecular weights,and distribution,is crucial ... For practicable elastomeric polyethylene,achieving high catalyst thermal stability and activity,along with precise control of polymer properties such as branching density,molecular weights,and distribution,is crucial but challenging.In this study,two sets of symmetricalα-diimine nickel complexes,each comprising four nickel bromide or chloride complexes,were synthesized and investigated their performance for ethylene polymerization under various reaction conditions.Upon activation with either Et2AlCl or MMAO cocatalysts,these complexes displayed not only high activity but also generated high molecular weight polyethylenes with controlled polydispersity and a substantial number of branches.The catalyst with the least steric hindrance displayed the remarkable high activity(up to 1.2×10^(7) g·mol^(-1)·h^(-1)).Notably,nickel bromides demonstrated higher activity compared to their chloride counterparts.The investigation into the effect of reaction temperature on catalytic performance revealed that NiBrMe-MMAO system displayed high thermal stability(activity up to 2.51×10^(6) g·mol^(-1)·h^(-1) at 100℃)and consistently yielded high polymer molecular weights with narrow polydispersity over a broad temperature range of 30-100℃.Of significant note,mechanical analysis of the resulting polyethylene demonstrated excellent ultimate tensile strength and high strain at break.Particularly,the polyethylene sample prepared at 100℃exhibited ultimate tensile strength up to 10 MPa with 1863%maximum strain at break and a strain recovery of up to 54.9%after ten cycles at a fixed strain of 300%,indicating excellent material properties of prepared thermoplastic polyethylene elastomers(TPE). 展开更多
关键词 Thermoplastic polyethylene elastomers α-Diimine nickel pre-catalysts Ethylene polymerization Mechanical properties Highly branched polyethylene
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部