The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual ...The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.展开更多
Fast and accurate measurement of the volume of earthmoving materials is of great signifcance for the real-time evaluation of loader operation efciency and the realization of autonomous operation. Existing methods for ...Fast and accurate measurement of the volume of earthmoving materials is of great signifcance for the real-time evaluation of loader operation efciency and the realization of autonomous operation. Existing methods for volume measurement, such as total station-based methods, cannot measure the volume in real time, while the bucket-based method also has the disadvantage of poor universality. In this study, a fast estimation method for a loader’s shovel load volume by 3D reconstruction of material piles is proposed. First, a dense stereo matching method (QORB–MAPM) was proposed by integrating the improved quadtree ORB algorithm (QORB) and the maximum a posteriori probability model (MAPM), which achieves fast matching of feature points and dense 3D reconstruction of material piles. Second, the 3D point cloud model of the material piles before and after shoveling was registered and segmented to obtain the 3D point cloud model of the shoveling area, and the Alpha-shape algorithm of Delaunay triangulation was used to estimate the volume of the 3D point cloud model. Finally, a shovel loading volume measurement experiment was conducted under loose-soil working conditions. The results show that the shovel loading volume estimation method (QORB–MAPM VE) proposed in this study has higher estimation accuracy and less calculation time in volume estimation and bucket fll factor estimation, and it has signifcant theoretical research and engineering application value.展开更多
Relative navigation is a key feature in the joint tactical information distribution system(JTIDS).A parametric message passing algorithm based on factor graph is proposed to perform relative navigation in JTIDS.Firs...Relative navigation is a key feature in the joint tactical information distribution system(JTIDS).A parametric message passing algorithm based on factor graph is proposed to perform relative navigation in JTIDS.First of all,the joint posterior distribution of all the terminals' positions is represented by factor graph.Because of the nonlinearity between the positions and time-of-arrival(TOA) measurement,messages cannot be obtained in closed forms by directly using the sum-product algorithm on factor graph.To this end,the Euclidean norm is approximated by Taylor expansion.Then,all the messages on the factor graph can be derived in Gaussian forms,which enables the terminals to transmit means and covariances.Finally,the impact of major error sources on the navigation performance are evaluated by Monte Carlo simulations,e.g.,range measurement noise,priors of position uncertainty and velocity noise.Results show that the proposed algorithm outperforms the extended Kalman filter and cooperative extended Kalman filter in both static and mobile scenarios of the JTIDS.展开更多
As weather radar stations require headroom environment to operate,they were mostly built on highlands which are usually unattended.The mains supply is relatively poor,and the risk of radar stoppages due to power outag...As weather radar stations require headroom environment to operate,they were mostly built on highlands which are usually unattended.The mains supply is relatively poor,and the risk of radar stoppages due to power outage is therefore ever-present.As such,the radar construction program is used to build a complementary security video monitoring system.By collecting monitoring images of the regulated power supply in real-time from power supply auto transfer systems in distribution rooms and radar transceiver rooms,using Spearman’s rank correlation coefficient to analyse pixel variation trends,and supplementing statistical analysis of pixel characteristics difference to eliminate misjudgments resulting from low image contrast in special scenarios,a software can be developed through C#.It has the function of automatically monitoring mains supply and alerting staff on duty to handle the power outage in a timely manner via text message so that any potential risk is neutralised before it can cause damage.This monitoring and auto-alerting approach is generally applicable to unattended rooms with large amounts of electronical equipment.展开更多
Realising adaptive traffic signal control(ATSC)through reinforcement learning(RL)is an important means to easetraffic congestion.This paper finds the computing power of the central processing unit(CPU)cannot fully use...Realising adaptive traffic signal control(ATSC)through reinforcement learning(RL)is an important means to easetraffic congestion.This paper finds the computing power of the central processing unit(CPU)cannot fully usedwhen Simulation of Urban MObility(SUMO)is used as an environment simulator for RL.We propose a multi-process framework under value-basedRL.First,we propose a shared memory mechanism to improve exploration efficiency.Second,we use the weight sharing mechanism to solve the problem of asynchronous multi-process agents.We also explained the reason shared memory in ATSC does not lead to early local optima of the agent.Wehave verified in experiments the sampling efficiency of the 10-process method is 8.259 times that of the single process.The sampling efficiency of the 20-process method is 13.409 times that of the single process.Moreover,the agent can also converge to the optimal solution.展开更多
Image classification is an important application of deep learning. In a typical classification task, the classification accuracy is strongly related to the features that are extracted via deep learning methods. An aut...Image classification is an important application of deep learning. In a typical classification task, the classification accuracy is strongly related to the features that are extracted via deep learning methods. An autoencoder is a special type of neural network, often used for dimensionality reduction and feature extraction. The proposed method is based on the traditional autoencoder, incorporating the "distance" information between samples from different categories. The model is called a semisupervised distance autoencoder. Each layer is first pre-trained in an unsupervised manner. In the subsequent supervised training, the optimized parameters are set as the initial values. To obtain more suitable features, we use a stacked model to replace the basic autoencoder structure with a single hidden layer. A series of experiments are carried out to test the performance of different models on several datasets, including the MNIST dataset, street view house numbers(SVHN) dataset, German traffic sign recognition benchmark(GTSRB), and CIFAR-10 dataset. The proposed semi-supervised distance autoencoder method is compared with the traditional autoencoder, sparse autoencoder, and supervised autoencoder. Experimental results verify the effectiveness of the proposed model.展开更多
基金Supported by National Key R&D Program of China(Grant Nos.2020YFB1709901,2020YFB1709904)National Natural Science Foundation of China(Grant Nos.51975495,51905460)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation of China(Grant No.2021-A1515012286)Science and Technology Plan Project of Fuzhou City of China(Grant No.2022-P-022).
文摘The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.
基金Supported by National Key R&D Program of China(Grant Nos.2020YFB1709901 and 2020YFB1709904)National Natural Science Foundation of China(Grant Nos.51975495 and 51905460)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation(Grant No.2021A1515012286)Guiding Funds of Central Government for Supporting the Development of the Local Science and Technology(Grant No.2022L3049).
文摘Fast and accurate measurement of the volume of earthmoving materials is of great signifcance for the real-time evaluation of loader operation efciency and the realization of autonomous operation. Existing methods for volume measurement, such as total station-based methods, cannot measure the volume in real time, while the bucket-based method also has the disadvantage of poor universality. In this study, a fast estimation method for a loader’s shovel load volume by 3D reconstruction of material piles is proposed. First, a dense stereo matching method (QORB–MAPM) was proposed by integrating the improved quadtree ORB algorithm (QORB) and the maximum a posteriori probability model (MAPM), which achieves fast matching of feature points and dense 3D reconstruction of material piles. Second, the 3D point cloud model of the material piles before and after shoveling was registered and segmented to obtain the 3D point cloud model of the shoveling area, and the Alpha-shape algorithm of Delaunay triangulation was used to estimate the volume of the 3D point cloud model. Finally, a shovel loading volume measurement experiment was conducted under loose-soil working conditions. The results show that the shovel loading volume estimation method (QORB–MAPM VE) proposed in this study has higher estimation accuracy and less calculation time in volume estimation and bucket fll factor estimation, and it has signifcant theoretical research and engineering application value.
基金supported by the National Natural Science Foundation of China(6120118161471037+1 种基金61571041)the Foundation for the Author of National Excellent Doctoral Dissertation of China(201445)
文摘Relative navigation is a key feature in the joint tactical information distribution system(JTIDS).A parametric message passing algorithm based on factor graph is proposed to perform relative navigation in JTIDS.First of all,the joint posterior distribution of all the terminals' positions is represented by factor graph.Because of the nonlinearity between the positions and time-of-arrival(TOA) measurement,messages cannot be obtained in closed forms by directly using the sum-product algorithm on factor graph.To this end,the Euclidean norm is approximated by Taylor expansion.Then,all the messages on the factor graph can be derived in Gaussian forms,which enables the terminals to transmit means and covariances.Finally,the impact of major error sources on the navigation performance are evaluated by Monte Carlo simulations,e.g.,range measurement noise,priors of position uncertainty and velocity noise.Results show that the proposed algorithm outperforms the extended Kalman filter and cooperative extended Kalman filter in both static and mobile scenarios of the JTIDS.
基金Supported by Science and Technology Open Research Fund Project of Guizhou Meteorological Bureau(KF[2009]08)。
文摘As weather radar stations require headroom environment to operate,they were mostly built on highlands which are usually unattended.The mains supply is relatively poor,and the risk of radar stoppages due to power outage is therefore ever-present.As such,the radar construction program is used to build a complementary security video monitoring system.By collecting monitoring images of the regulated power supply in real-time from power supply auto transfer systems in distribution rooms and radar transceiver rooms,using Spearman’s rank correlation coefficient to analyse pixel variation trends,and supplementing statistical analysis of pixel characteristics difference to eliminate misjudgments resulting from low image contrast in special scenarios,a software can be developed through C#.It has the function of automatically monitoring mains supply and alerting staff on duty to handle the power outage in a timely manner via text message so that any potential risk is neutralised before it can cause damage.This monitoring and auto-alerting approach is generally applicable to unattended rooms with large amounts of electronical equipment.
基金Gansu Education Department:[Grant Number 2021CXZX-515]National Natural Science Foundation of China:[Grant Number 61763028].
文摘Realising adaptive traffic signal control(ATSC)through reinforcement learning(RL)is an important means to easetraffic congestion.This paper finds the computing power of the central processing unit(CPU)cannot fully usedwhen Simulation of Urban MObility(SUMO)is used as an environment simulator for RL.We propose a multi-process framework under value-basedRL.First,we propose a shared memory mechanism to improve exploration efficiency.Second,we use the weight sharing mechanism to solve the problem of asynchronous multi-process agents.We also explained the reason shared memory in ATSC does not lead to early local optima of the agent.Wehave verified in experiments the sampling efficiency of the 10-process method is 8.259 times that of the single process.The sampling efficiency of the 20-process method is 13.409 times that of the single process.Moreover,the agent can also converge to the optimal solution.
基金Project supported by the National Natural Science Foundation of China (Nos. U1664264 and U1509203)。
文摘Image classification is an important application of deep learning. In a typical classification task, the classification accuracy is strongly related to the features that are extracted via deep learning methods. An autoencoder is a special type of neural network, often used for dimensionality reduction and feature extraction. The proposed method is based on the traditional autoencoder, incorporating the "distance" information between samples from different categories. The model is called a semisupervised distance autoencoder. Each layer is first pre-trained in an unsupervised manner. In the subsequent supervised training, the optimized parameters are set as the initial values. To obtain more suitable features, we use a stacked model to replace the basic autoencoder structure with a single hidden layer. A series of experiments are carried out to test the performance of different models on several datasets, including the MNIST dataset, street view house numbers(SVHN) dataset, German traffic sign recognition benchmark(GTSRB), and CIFAR-10 dataset. The proposed semi-supervised distance autoencoder method is compared with the traditional autoencoder, sparse autoencoder, and supervised autoencoder. Experimental results verify the effectiveness of the proposed model.