Objectives:This study was conducted to investigate the xanthine oxidase(XO)inhibitory activities of 18 monomeric anthocyanins from berry fruits and roselle,and to illustrate the underlying mechanism of the most active...Objectives:This study was conducted to investigate the xanthine oxidase(XO)inhibitory activities of 18 monomeric anthocyanins from berry fruits and roselle,and to illustrate the underlying mechanism of the most active anthocyanin delphinidin-3-O-sambubioside.Materials and Methods:Eighteen monomeric anthocyanins were prepared and purified in our laboratory.The inhibitory properties of anthocyanins were investigated by in vitro inhibitory activity studies and fluorescence quenching studies;the inhibitory mechanism was explored through kinetic studies,fluorescence quenching studies,circular dichroism analysis and computational docking simulations.Results:XO inhibitory activities of anthocyanins were related to the structures of B rings and glycosides.Among all the tested anthocyanins,delphinidin-3-O-sambubioside showed the most potent inhibitory activity with an IC_(50) of 17.1μmol/L,which was comparable to the positive control allopurinol.Spectroscopic results revealed that delphinidin-3-O-sambubioside could spontaneously interact with XO and induce conformational changes.Computational docking study indicated that delphinidin-3-O-sambubioside could bind to XO with a proper orientation,stably formed π-π interactions and hydrogen bonds with key residues,thus preventing the substrate from entering the active pocket.Conclusions:In brief,our study identified delphinidin-3-O-sambubioside as a potent XO inhibitor from natural anthocyanins,which is potentially applicable for prevention and treatment of hyperuricemia.展开更多
We present a theoretical study of mode evolution in high-power distributed side-coupled cladding-pumped(DSCCP)fiber amplifiers.A semi-analytical model taking the side-pumping schemes,transverse mode competition,and st...We present a theoretical study of mode evolution in high-power distributed side-coupled cladding-pumped(DSCCP)fiber amplifiers.A semi-analytical model taking the side-pumping schemes,transverse mode competition,and stimulated thermal Rayleigh scattering into consideration has been built,which can model the static and dynamic mode evolution in high-power DSCCP fiber amplifiers.The mode evolution behavior has been investigated with variation of the fiber amplifier parameters,such as the pump power distribution,the length of the DSCCP fiber,the averaged coupling coefficient,the number of the pump cores and the arrangement of the pump cores.Interestingly,it revealed that static mode evolution induced by transverse mode competition is different from the dynamic evolution induced by stimulated thermal Rayleigh scattering.This shows that the high-order mode experiences a slightly higher gain in DSCCP fiber amplifiers,but the mode instability thresholds for DSCCP fiber amplifiers are higher than those for their end-coupled counterparts.By increasing the pump core number and reducing the averaged coupling coefficient,the mode instability threshold can be increased,which indicates that DSCCP fibers can provide additional mitigation strategies of dynamic mode instability.展开更多
文摘Objectives:This study was conducted to investigate the xanthine oxidase(XO)inhibitory activities of 18 monomeric anthocyanins from berry fruits and roselle,and to illustrate the underlying mechanism of the most active anthocyanin delphinidin-3-O-sambubioside.Materials and Methods:Eighteen monomeric anthocyanins were prepared and purified in our laboratory.The inhibitory properties of anthocyanins were investigated by in vitro inhibitory activity studies and fluorescence quenching studies;the inhibitory mechanism was explored through kinetic studies,fluorescence quenching studies,circular dichroism analysis and computational docking simulations.Results:XO inhibitory activities of anthocyanins were related to the structures of B rings and glycosides.Among all the tested anthocyanins,delphinidin-3-O-sambubioside showed the most potent inhibitory activity with an IC_(50) of 17.1μmol/L,which was comparable to the positive control allopurinol.Spectroscopic results revealed that delphinidin-3-O-sambubioside could spontaneously interact with XO and induce conformational changes.Computational docking study indicated that delphinidin-3-O-sambubioside could bind to XO with a proper orientation,stably formed π-π interactions and hydrogen bonds with key residues,thus preventing the substrate from entering the active pocket.Conclusions:In brief,our study identified delphinidin-3-O-sambubioside as a potent XO inhibitor from natural anthocyanins,which is potentially applicable for prevention and treatment of hyperuricemia.
基金funded by the National Natural Science Foundation of China(NSFC)(61905226)the Youth Talent Climbing Foundation of the Research Center of Laser Fusion。
文摘We present a theoretical study of mode evolution in high-power distributed side-coupled cladding-pumped(DSCCP)fiber amplifiers.A semi-analytical model taking the side-pumping schemes,transverse mode competition,and stimulated thermal Rayleigh scattering into consideration has been built,which can model the static and dynamic mode evolution in high-power DSCCP fiber amplifiers.The mode evolution behavior has been investigated with variation of the fiber amplifier parameters,such as the pump power distribution,the length of the DSCCP fiber,the averaged coupling coefficient,the number of the pump cores and the arrangement of the pump cores.Interestingly,it revealed that static mode evolution induced by transverse mode competition is different from the dynamic evolution induced by stimulated thermal Rayleigh scattering.This shows that the high-order mode experiences a slightly higher gain in DSCCP fiber amplifiers,but the mode instability thresholds for DSCCP fiber amplifiers are higher than those for their end-coupled counterparts.By increasing the pump core number and reducing the averaged coupling coefficient,the mode instability threshold can be increased,which indicates that DSCCP fibers can provide additional mitigation strategies of dynamic mode instability.