期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fuzzy Control Optimization of Loading Paths for Hydroforming of Variable Diameter Tubes
1
作者 Yong Xu Xuewei Zhang +4 位作者 Wenlong Xie Shihong Zhang Xinyue Huang Yaqiang Tian liansheng chen 《Computers, Materials & Continua》 SCIE EI 2024年第11期2753-2768,共16页
The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of o... The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates. 展开更多
关键词 Variable diameter tubes finite element simulation HYDROFORMING fuzzy control
下载PDF
Research progress on corrosion behaviors and biocompatibility of rare-earth magnesium alloys in vivo and in vitro 被引量:1
2
作者 Yuan Zhang Yun Liu +2 位作者 Ruining Zheng Yaqi Zheng liansheng chen 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第12期1827-1842,I0001,共17页
As yet,Mg alloys acting as the medical implants have drawn extensive attention,due to their spontaneous degrada bility,effective load-transmissibility and the excellent biocompatibility,particularly in bone tissue rec... As yet,Mg alloys acting as the medical implants have drawn extensive attention,due to their spontaneous degrada bility,effective load-transmissibility and the excellent biocompatibility,particularly in bone tissue reconstruction and vascular radial-support.Regrettably,they were inevitably affected by the tension/compression-torsion,dynamic erosion and corrosion fatigue under complex service conditions,which lead to premature failure of implantation-materials.Micro-alloying addition is an effective way to delay the rapid degradation,especially in rare-earth micro-composite addition.It can not only reduce intensities of galvanic-corrosion by refining the grain sizes and adjusting the Volta-potentials distribution of the precipitates,but also modify the compositions and biocompatibility of the degradation products.Moreover,the higher compress tress on the surface can improve the stability and densification of the film layer,which enhanced the corrosion resistance.Thus,the latest research progress about in vivo/vitro degradation behavio rs and bioco mpatibility of rare-earth Mg alloys is reviewed;The internal relationships between rare-earth elements,phase features and degradation behaviors of Mg alloys are summarized.Moreover,the effects of rare-earth addition on the film-characteristics are deeply explained,and the induced mechanisms of rare earth elements on the biocompatibility are revealed. 展开更多
关键词 Mg alloys Rare-earth elements MICROSTRUCTURE Degradation behaviors BIOCOMPATIBILITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部