期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Genetic and pathogenic characterization of new infectious bronchitis virus strains in the GVI-1 and GI-19 lineages isolated in central China
1
作者 Yuhan Yang Dou Wang +13 位作者 Yaning Bai Wenyan Huang Shimin Gao Xingchen Wu Ying Wang Jianle Ren Jinxin He Lin Jin Mingming Hu Zhiwei Wang Zhongbing Wang Haili Ma Junping Li libin liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2407-2420,共14页
Avian infectious bronchitis(IB)is a highly contagious infectious disease caused by infectious bronchitis virus(IBV),which is prevalent in many countries worldwide and causes serious harm to the poultry industry.At pre... Avian infectious bronchitis(IB)is a highly contagious infectious disease caused by infectious bronchitis virus(IBV),which is prevalent in many countries worldwide and causes serious harm to the poultry industry.At present,many commercial IBV vaccines have been used for the prevention and control of IB;however,IB outbreaks occur frequently.In this study,two new strains of IBV,SX/2106 and SX/2204,were isolated from two flocks which were immunized with IBV H120 vaccine in central China.Phylogenetic and recombination analysis indicated that SX/2106,which was clustered into the GI-19 lineage,may be derived from recombination events of the GI-19 and GI-7 strains and the LDT3-A vaccine.Genetic analysis showed that SX/2204 belongs to the GVI-1 lineage,which may have originated from the recombination of the GI-13 and GVI-1 strains and the H120 vaccine.The virus cross-neutralization test showed that the antigenicity of SX/2106 and SX/2204 was different from H120.Animal experiments found that both SX/2106 and SX/2204 could replicate effectively in the lungs and kidneys of chickens and cause disease and death,and H120 immunization could not provide effective protection against the two IBV isolates.It is noteworthy that the pathogenicity of SX/2204 has significantly increased compared to the GVI-1 strains isolated previously,with a mortality rate up to 60%.Considering the continuous mutation and recombination of the IBV genome to produce new variant strains,it is important to continuously monitor epidemic strains and develop new vaccines for the prevention and control of IBV epidemics. 展开更多
关键词 infectious bronchitis virus GI-19 lineage GVI-1 lineage complete genome recombination PATHOGENICITY
下载PDF
Genetic and biological properties of H9N2 avian influenza viruses isolated in central China from2020 to 2022
2
作者 libin liang Yaning Bai +14 位作者 Wenyan Huang Pengfei Ren Xing Li Dou Wang Yuhan Yang Zhen Gao Jiao Tang Xingchen Wu Shimin Gao Yanna Guo Mingming Hu Zhiwei Wang Zhongbing Wang Haili Ma Junping Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2778-2791,共14页
The H9N2 subtype of avian influenza virus(AIV)is widely prevalent in poultry and wild birds globally,and has become the predominant subtype circulating in poultry in China.The H9N2 AIV can directly or indirectly(by se... The H9N2 subtype of avian influenza virus(AIV)is widely prevalent in poultry and wild birds globally,and has become the predominant subtype circulating in poultry in China.The H9N2 AIV can directly or indirectly(by serving as a"donor virus")infect humans,posing a significant threat to public health.Currently,there is a lack of in-depth research on the prevalence of H9N2 viruses in Shanxi Province,central China.In this study,we isolated 14 H9N2 AIVs from October 2020 to April 2022 in Shanxi Province,and genetic analysis revealed that these viruses belonged to 7 different genotypes.Our study on animals revealed that the H9N2 strains we identified displayed high transmission efficiency among chicken populations,and exhibited diverse replication abilities within these birds.These viruses could replicate efficiently in the lungs of mice,with one strain also demonstrating the capacity to reproduce in organs like the brain and kidneys.At the cellular level,the replication ability of different H9N2 strains was evaluated using plaque formation assays and multi-step growth curve assays,revealing significant differences in the replication and proliferation efficiency of the various H9N2 viruses at the cellular level.The antigenicity analysis suggested that these isolates could be classified into 2 separate antigenic clusters.Our research provides crucial data to help understand the prevalence and biological characteristics of H9N2 AIVs in central China.It also highlights the necessity of enhancing the surveillance of H9N2 AIVs. 展开更多
关键词 avian influenza virus H9N2 central China PATHOGENICITY ANTIGENICITY
下载PDF
TRIM35 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2 被引量:9
3
作者 Nan Sun Li Jiang +11 位作者 Miaomiao Ye Yihan Wang Guangwen Wang Xiaopeng Wan Yuhui Zhao Xia Wen libin liang Shujie Ma Liling Liu Zhigao Bu Hualan Chen Chengjun Li 《Protein & Cell》 SCIE CAS CSCD 2020年第12期894-914,共21页
Tripartite motif(TRIM)family proteins are important effectors of innate immunity against viral infections.Here we identified TRIM35 as a regulator of TRAF3 activation.Deficiency in or inhibition of TRIM35 suppressed t... Tripartite motif(TRIM)family proteins are important effectors of innate immunity against viral infections.Here we identified TRIM35 as a regulator of TRAF3 activation.Deficiency in or inhibition of TRIM35 suppressed the production of type I interferon(IFN)in response to viral infection.777m35-deficient mice were more susceptible to influenza A virus(IAV)infection than were wild-type mice.TRIM35 promoted the RIG-Imediated signaling by catalyzing Lys63-linked polyubiquitination of TRAF3 and the subsequent formation of a signaling complex with VISA and TBK1.IAV PB2 polymerase countered the innate antiviral immune response by impeding the Lys63-linked polyubiquitination and activation of TRAF3.TRIM35 mediated Lys48-linked polyubiquitination and proteasomal degradation of IAV PB2,thereby antagonizing its suppression of TRAF3 activation.Our in vitro and in vivo findings thus reveal novel roles of TRIM35,through catalyzing Lys63-or Lys48-linked polyubiquitination,in RIG-I antiviral immunity and mechanism of defense against IAV infection. 展开更多
关键词 influenza A virus PB2 TRIM35 TRAF3 UBIQUITINATION antiviral immunity
原文传递
Generation and application of replication-competent Venus-expressing H5N1,H7N9,and H9N2 influenza A viruses 被引量:3
4
作者 guangwen wang jie zhang +15 位作者 fandi kong qibing li jinliang wang shujie ma yuhui zhao libin liang junping li nan sun lizheng guan yuan zhou chenchen zhou shanyu huang zhigao bu li jiang hualan chen chengjun li 《Science Bulletin》 SCIE EI CSCD 2018年第3期176-186,共11页
The generation and application of replication-competent influenza A virus (IAV) expressing a reporter gene represent a valuable tool to elucidate the mechanism of viral pathogenesis and establish new coun- termeasur... The generation and application of replication-competent influenza A virus (IAV) expressing a reporter gene represent a valuable tool to elucidate the mechanism of viral pathogenesis and establish new coun- termeasures to combat the threat of influenza. Here, replication-competent 1AVs with a neuraminidase (NA) segment harboring a fluorescent reporter protein, Venus, were generated in the background of H5N1, H7N9, and H9N2 influenza viruses, the three subtypes of viruses with imminent pandemic poten- tial. All three reporter viruses maintained virion morphology, replicated with similar or slightly reduced titers relative to their parental viruses, and stably expressed the fluorescent signal for at least two pas- sages in embryonated chicken eggs. As a proof of concept, we demonstrated that these reporter viruses, used in combination with a high-content imaging system, can serve as a convenient and rapid tool for the screening of antivirals and host factors involved in the virus life cycle. Moreover. the reporter viruses demonstrated similar growth properties and tissue tropism as their parental viruses in mice, among which the HTN9 NA-Venus virus could potentially be used in ex vivo studies to better understand H7N9 pathogenesis or to develop novel therapeutics. 展开更多
关键词 Replication-competent Influenza A virus H5N1 H7N9 H9N2 Venus
原文传递
Prediction of aggregation behavior of submicron-sized particles of praseodymium-doped zirconium silicate in aqueous suspension by population balance model
5
作者 libin liang Yanmin Wang Zhidong Pana, 《Particuology》 SCIE EI CAS CSCD 2016年第2期83-92,共10页
The aggregation behavior of submicron-sized particles of praseodymium-doped zirconium silicate, a ceramic pigment, in aqueous suspension was predicted by a modified population balance model, In the model, the collisio... The aggregation behavior of submicron-sized particles of praseodymium-doped zirconium silicate, a ceramic pigment, in aqueous suspension was predicted by a modified population balance model, In the model, the collision frequencies were selected to describe evolution of the particle size distribution of the suspension. The collision efficiency was estimated as a function of interaction potential between particles based on Derjaguin-Landau-Verwey-Overbeek theory. The population balance model was modified to predict the stable state of the aggregation by introducing the volume mean size of aggregate to stability ratio. In addition, aggregation of the particles in aqueous suspension in the presence of sodium dodecyl benzene sulfonate or potassium chloride was experimentally investigated. The predicted data (i.e., the final aggregate size, aggregation rate, and particle size distribution) were similar to the experimentalresults. 展开更多
关键词 Population balance model Aggregation Surface forces Colloidal suspensions Praseodymium-doped zirconium silicate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部