With the rapid development of intelligent transportation, carpooling with the help of Vehicular Networks plays an important role in improving transportati<span>on efficiency and solving environmental problems. H...With the rapid development of intelligent transportation, carpooling with the help of Vehicular Networks plays an important role in improving transportati<span>on efficiency and solving environmental problems. However, attackers us</span>ually launch attacks and cause privacy leakage of carpooling users. In addition, the trust issue between unfamiliar vehicles and passengers reduces the efficiency of carpooling. To address these issues, this paper introduced a trusted and pr<span>ivacy-preserving carpooling matching scheme in Vehicular Networks (T</span>PCM). TPC<span>M scheme introduced travel preferences during carpooling matching, according to the passengers’ individual travel preferences needs, which adopt</span>ed th<span>e privacy set intersection technology based on the Bloom filter to match t</span>he passengers with the vehicles to achieve the purpose of protecting privacy an<span>d meeting the individual needs of passengers simultaneously. TPCM sch</span>eme adopted a multi-faceted trust management model, which calculated the trust val<span>ue of different travel preferences of vehicle based on passengers’ carp</span>ooling feedback to evaluate the vehicle’s trustworthiness from multi-faceted when carpooling matching. Moreover, a series of experiments were conducted to verify the effectiveness and robustness of the proposed scheme. The results show that the proposed scheme has high accuracy, lower computational and communication costs when compared with the existing carpooling schemes.展开更多
Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high...Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high-quality interfacial contact.Herein,we develop a novel strategy to in-situ grow ultrathin/V-doped graphene(NG)layer on TiO_(2) hollow spheres(HS) with large area and intimate interfacial contact via a chemical vapor deposition(CVD).The optimized TiO^(2)/NG HS nanocomposite achieves total CO_(2)conversion rates(the sum yield of CO,CH_(3)OH and CH_(4))of 18.11μmol·g^(-1)h^(-1),which is about 4.6 times higher than blank T1O_(2)HS.Experimental results demonstrate that intimate interfacial contact and abundant pyridinic N sites can effectively facilitate photogenerated charge carrier separation and transport,realizing enhanced photocatalytic CO_(2)reduction performance.In addition,this work provides an effective strategy for in-situ construction of graphene-based photocatalysts for highly efficient photocatalytic CO_(2)conversion.展开更多
Due to the openness of wireless multiuser networks,the private information transmitted in uplink or downlink is vulnerable to eavesdropping.Especially,when the downlink transmissions use nonorthogonal multiple access(...Due to the openness of wireless multiuser networks,the private information transmitted in uplink or downlink is vulnerable to eavesdropping.Especially,when the downlink transmissions use nonorthogonal multiple access(NOMA)techniques,the system further encounters interior eavesdropping.In order to address these security problems,we study the secret communication in multiuser networks with both uplink and downlink transmissions.Specifically,in uplink transmissions,the private messages transmitted in each slot are correlated,so any loss of the private information at the eavesdropper will prevent the eavesdropper from decoding the private information in later time slots.In downlink transmissions,the messages are correlated to the uplink information.In this way,any unexpected users who lose the expected user’s uplink information cannot decode its downlink information.The intercept probability is used to measure security performance and we analyze it in theory.Finally,simulation results are provided to corroborate our theoretical analysis.展开更多
Natural radioactivity is very important for the assessment of the marine sand property and usability. By using gamma spectrometry, the concentration of the natural radionuclides 226Ra, 232Th and 40K have been measured...Natural radioactivity is very important for the assessment of the marine sand property and usability. By using gamma spectrometry, the concentration of the natural radionuclides 226Ra, 232Th and 40K have been measured in marine sand deposits from Liaodong Bay (LDB), North Yellow Sea (NYS), Zhoushan area (ZS), Taiwan Shoal (TS) and Pearl River Mouth (PR), offshore China, which are potential marine sand mining areas. The radiation activity equivalent (Raeq), indoor gamma absorbed dose rate (DR), annual effective dose (HR), alpha index (Ia), gamma index (Ig), external radiation hazard index (Hex), internal radiation hazard index (Hin), representative level index (RLI), excess lifetime cancer risk (ELCR) and annual gonadal dose equivalent (AGDE) associated with the natural radionuclides are calculated to assess the radiation hazard of the natural radioactivity in the marine sands offshore China. From the analysis, it is found that these marine sands are safe for the constructions. The Pearson correlation coefficient reveals that the 226Ra distribution in the marine sands offshore China is controlled by the variation of the 40K concentration. Principal component analysis (PCA) yields a two-component representation of the entire data from the marine sands, wherein 98.22% of the total variance is explained. Our results provide good baseline data to expand the database of radioactivity of building materials in China and all over the world.展开更多
The BF3/n-BuOH complexes were investigated as active species in catalyzing n-decene polymerization reaction.The structures of BF3/n-BuOH complexes were characterized not only by modern spectrum but also by calculation...The BF3/n-BuOH complexes were investigated as active species in catalyzing n-decene polymerization reaction.The structures of BF3/n-BuOH complexes were characterized not only by modern spectrum but also by calculation at theoretical level. The results confirmed that BF3/n-BuOH complexes changed from BF3·(n-BuOH)2 complexes to BF3·n-BuOH complexes with the mass fraction of BF3 increasing. These two complexes have different catalytic activity, but BF3·n-BuOH was superior. The highest n-decene conversion could reach 99% and the most excellent selectivity of n-decene trimer and tetramer could reach up to 80% yield by a series of controlled conditions. This work can help to understand the catalytic active species of n-decene polymerization and provide support for industrialization of poly-alpha-olefins(PAOs).展开更多
Cold seeps are pervasive along the continental margin worldwide,and are recognized as hotspots for elemental cycling pathway on Earth.In this study,analyses of pore water geochemical compositions of one-400 cm piston ...Cold seeps are pervasive along the continental margin worldwide,and are recognized as hotspots for elemental cycling pathway on Earth.In this study,analyses of pore water geochemical compositions of one-400 cm piston core(S3)and the application of a mass balance model are conducted to assess methane-associated biogeochemical reactions and uncover the relationship of methane in shallow sediment with gas hydrate reservoir at the Makran accretionary wedge off Pakistan.The results revealed that approximately 77%of sulfate is consumed by the predominant biogeochemical process of anaerobic oxidation of methane.However,the estimated sulfate-methane interface depth is-400 cm below sea floor with the methane diffusive flux of 0.039 mol/(m^(2)·a),suggesting the activity of methane seepage.Based on the δ^(13)C_(DIC) mass balance model combined with the contribution proportion of different dissolved inorganic carbon sources,this study calculated the δ^(13)C of the exogenous methane to be-57.9‰,indicating that the exogenous methane may be a mixture source,including thermogenic and biogenic methane.The study of pore water geochemistry at Makran accretionary wedge off Pakistan may have considerable implications for understanding the specific details on the dynamics of methane in cold seeps and provide important evidence for the potential occurrence of subsurface gas hydrate in this area.展开更多
Gastric cancer(GC)ranks fifth for cancer incidence and fourth for mortality globally.1 Clinical outcomes have varied among patients receiving similar treatments at the same stage,suggesting the current prognostic tool...Gastric cancer(GC)ranks fifth for cancer incidence and fourth for mortality globally.1 Clinical outcomes have varied among patients receiving similar treatments at the same stage,suggesting the current prognostic tools remain somewhat flawed.2,3 single-cell analysis of GC data allowed us to dissect transcriptional programs underlying lymphocyte residency and exhaustion.展开更多
Infection susceptibility,poor vaccination efficacy,age-related disease onset,and neoplasms are linked to innate and adaptive immune dysfunction that accompanies aging(known as immunosenescence).During aging,organisms ...Infection susceptibility,poor vaccination efficacy,age-related disease onset,and neoplasms are linked to innate and adaptive immune dysfunction that accompanies aging(known as immunosenescence).During aging,organisms tend to develop a characteristic inflammatory state that expresses high levels of pro-inflammatory markers,termed inflammaging.This chronic inflammation is a typical phenomenon linked to immunosenescence and it is considered the major risk factor for age-related diseases.Thymic involution,naïve/memory cell ratio imbalance,dysregulated metabolism,and epigenetic alterations are striking features of immunosenescence.Disturbed T-cell pools and chronic antigen stimulation mediate premature senescence of immune cells,and senescent immune cells develop a proinflammatory senescence-associated secretory phenotype that exacerbates inflammaging.Although the underlying molecular mechanisms remain to be addressed,it is well documented that senescent T cells and inflammaging might be major driving forces in immunosenescence.Potential counteractive measures will be discussed,including intervention of cellular senescence and metabolic-epigenetic axes to mitigate immunosenescence.In recent years,immunosenescence has attracted increasing attention for its role in tumor development.As a result of the limited participation of elderly patients,the impact of immunosenescence on cancer immunotherapy is unclear.Despite some surprising results from clinical trials and drugs,it is necessary to investigate the role of immunosenescence in cancer and other age-related diseases.展开更多
Two-dimensional MXenes are generally prepared by the etching of acid solutions.The as-synthesized MXenes are terminated by acid group anions(F^(–),Cl^(–),etc.),which affect the electrochemical performance of MXenes....Two-dimensional MXenes are generally prepared by the etching of acid solutions.The as-synthesized MXenes are terminated by acid group anions(F^(–),Cl^(–),etc.),which affect the electrochemical performance of MXenes.Here,we report a novel method to prepare Mo_(2)C MXene from Mo_(2)Ga_(2)C by the hydrothermal etching of alkali solutions.Highly pure Mo_(2)C MXene was successfully synthesized by the etching of NaOH,while the etchings of LiOH and KOH were failed.The concentration of NaOH,temperature,and time strongly affect the purity of as-prepared MXene.Pure Mo_(2)C MXene could be synthesized by the etching of 20 M NaOH at 180 for 24 h.After℃intercalation by hexadecyl trimethyl ammonium bromide at 90 for 96 h,few℃-layer Mo_(2)C MXene was obtained.The Mo_(2)C MXene made by NaOH etching after intercalation exhibited excellent performance as anode of lithium-ion battery,compared with general Mo_(2)C MXene made by HF etching and the Mo_(2)C MXene reported in literature.The final discharge specific capacity was 266.73 mAh·g^(−1)at 0.8 A·g^(−1),which is 52%higher than that Mo_(2)C made by HF etching(175.77 mAh·g^(−1)).This is because Mo_(2)C MXene made by NaOH etching has lager specific surface area,lower resistance,and pure O/OH termination without acid anion termination.This is the first report to make Mo_(2)C MXene by alkali etching and the samples made by this method exhibited significantly better electrochemical performance than the samples made by general HF etching.展开更多
The Omicron variant of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)was first confirmed in November 2021 in South Africa^([1])and is more transmissible than other sub-variants.^([2])The influence of Omic...The Omicron variant of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)was first confirmed in November 2021 in South Africa^([1])and is more transmissible than other sub-variants.^([2])The influence of Omicron in children has been recognized with increased hospital admission rate than Delta wave.^([3,4])But severe clinical outcomes and comorbidity of Omicron are less than Delta in children.^([5])Hospitalized children during the Omicron period were more likely to be younger than that in the pre-Omicron period.^([6])展开更多
Preparation of efficient photocatalysts with ease of recovery in solar fuel generation is highly desired to achieve carbon neutralization in carbon dioxide(CO_(2))emissions.Inspired from the forest with superior light...Preparation of efficient photocatalysts with ease of recovery in solar fuel generation is highly desired to achieve carbon neutralization in carbon dioxide(CO_(2))emissions.Inspired from the forest with superior light penetration and fast gas transport,a TiO_(2)/g-C_(3)N_(4)composite nanowire arrays(NAs)film with maximized light utilization is devised.It is achieved by in-situ coating a thin layer of g-C_(3)N_(4)(as the leaf)on the vertically-oriented TiO_(2)arrays(as tree trunks)on Ti foil(as soil).Benefiting from the effective charge separation by S-scheme charge transfer,intimate contact by the in-situ growth as well as the ingenious structure,the composite,readily recyclable,displays exciting performance in photocatalytic CO_(2)reduction.It is beyond doubt that the combination of heterojunction construction and“nature-inspired biomimetic photocatalyst”design promises practical applications and industrial use.展开更多
In this study,two-dimensional V2CTx MXene has been prepared by selectively etching Al layers from V2 AlC MAX phase by NaF+HCl etching at 90℃for 72 h and its performance as supercapacitor(SC)electrode were tested usin...In this study,two-dimensional V2CTx MXene has been prepared by selectively etching Al layers from V2 AlC MAX phase by NaF+HCl etching at 90℃for 72 h and its performance as supercapacitor(SC)electrode were tested using simulating seawater as electrolyte.V2CTx MXene-based electrodes shows a good capacitance of 181.1 F/g,which is in accordance with the volumetric specific capacitance of 317.8 F/cm^3,and with 89.1%capacitance retention even after 5000 cycle.Compared with other MXenes,V2CTx have better electrochemical performance as SC electrode.This work provides an innovative strategy to apply V2CTx MXene as SC electrode in safety and effective seawater electrolyte.展开更多
Two-dimensional(2D)carbide Ti_(3)C_(2)was synthesized by exfoliating Ti_(3)AlC_(2)in HF solution and used for supercapacitive performance investigation in 3 M KOH electrolyte.The specific surface area(SSA)of as-synthe...Two-dimensional(2D)carbide Ti_(3)C_(2)was synthesized by exfoliating Ti_(3)AlC_(2)in HF solution and used for supercapacitive performance investigation in 3 M KOH electrolyte.The specific surface area(SSA)of as-synthesized Ti_(3)C_(2)was 22.35 m^(2)/g.Ti_(3)C_(2)-based supercapacitor electrodes exhibited good energy storage ability and had a volumetric capacitance 119.8 F/cm^(3)at the current density of 2.5 A/g.Moreover,the addition of carbon black into Ti_(3)C_(2)powders greatly improved the performance of Ti_(3)C_(2)-based capacitors because carbon black restrained the preferred orientation of 2D Ti_(3)C_(2),providing fast ion transport channels,and in turn,decreasing electrical resistance from 16.7Ωto 3.5Ω.展开更多
Two-dimensional carbide MXenes(Ti_3C_2T_x and V_2CT_x)were prepared by exfoliating MAX phases(Ti_3AlC_2 and V_2AlC)powders in the solution of sodium fluoride(NaF)and hydrochloric acid(HCl).The specific surface area(SS...Two-dimensional carbide MXenes(Ti_3C_2T_x and V_2CT_x)were prepared by exfoliating MAX phases(Ti_3AlC_2 and V_2AlC)powders in the solution of sodium fluoride(NaF)and hydrochloric acid(HCl).The specific surface area(SSA)of as-prepared Ti_3C_2T_x was 21 m^2/g,and that of V_2CT_x was 9 m^2/g.After intercalation with dimethylsulfoxide,the SSA of Ti_3C_2T_x was increased to 66 m^2/g;that of V_2CT_x was increased to 19 m^2/g.Their adsorption properties on carbon dioxide(CO_2)were investigated under 0–4 MPa at room temperature(298 K).Intercalated Ti_3C_2T_x had the adsorption capacity of 5.79 mmol/g,which is close to the capacity of many common sorbents.The theoretical capacity of Ti_3C_2T_x with the SSA of 496 m^2/g was up to 44.2 mmol/g.Additionally,due to high pack density,MXenes had very high volume-uptake capacity.The capacity of intercalated Ti_3C_2T_(x )measured in this paper was 502 V·v^(–1).This value is already higher than volume capacity of most known sorbents.These results suggest that MXenes have some advantage features to be researched as novel CO_2 capture materials.展开更多
The effect of etching environment(opened or closed)on the synthesis and electrochemical properties of V_(2)C MXene was studied.V_(2)C MXene samples were synthesized by selectively etching of V2AlC at 90℃in two differ...The effect of etching environment(opened or closed)on the synthesis and electrochemical properties of V_(2)C MXene was studied.V_(2)C MXene samples were synthesized by selectively etching of V2AlC at 90℃in two different environments:opened environment(OE)in oil bath pans under atmosphere pressure and closed environment(CE)in hydrothermal reaction kettles under higher pressures.In OE,only NaF(sodium fluoride)+HCl(hydrochloric acid)etching solution can be used to synthesize highly pure V_(2)C MXene.However,in CE,both LiF(lithium fluoride)+HCl and NaF+HCl etchant can be used to prepare V_(2)C MXene.Moreover,the V_(2)C MXene samples made in CE had higher purity and better-layered structure than those made in OE.Although the purity of V_(2)C obtained by LiF+HCl is lower than that of V_(2)C obtained using NaF+HCl,it shows better electrochemical performance as anodes of lithium-ion batteries(LIBs).Therefore,etching in CE is a better method for preparing highly pure V_(2)C MXene,which provides a reference for expanding the synthesis methods of V_(2)C with better electrochemical properties.展开更多
Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propos...Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propose a Multi-Scale Fully Convolutional Network(MSFCN)with a multi-scale convolutional kernel as well as a Channel Attention Block(CAB)and a Global Pooling Module(GPM)in this paper to exploit discriminative representations from two-dimensional(2D)satellite images.Meanwhile,to explore the ability of the proposed MSFCN for spatio-temporal images,we expand our MSFCN to three-dimension using three-dimensional(3D)CNN,capable of harnessing each land cover category’s time series interac-tion from the reshaped spatio-temporal remote sensing images.To verify the effectiveness of the proposed MSFCN,we conduct experiments on two spatial datasets and two spatio-temporal datasets.The proposed MSFCN achieves 60.366%on the WHDLD dataset and 75.127%on the GID dataset in terms of mIoU index while the figures for two spatio-temporal datasets are 87.753%and 77.156%.Extensive comparative experiments and abla-tion studies demonstrate the effectiveness of the proposed MSFCN.展开更多
Nowadays,photocatalytic technologies are regarded as promising strategies to solve energy problems,and various photocatalysts have been synthesized and explored.In this paper,a novel CdS/MoO_(2)@Mo_(2)C-MXene photocat...Nowadays,photocatalytic technologies are regarded as promising strategies to solve energy problems,and various photocatalysts have been synthesized and explored.In this paper,a novel CdS/MoO_(2)@Mo_(2)C-MXene photocatalyst for H_(2)production was constructed by a two-step hydrothermal method,where MoO_(2)@Mo_(2)C-MXene acted as a binary co-catalyst.In the first hydrothermal step,MoO_(2)crystals with an egged shape grew on the surface of two-dimensional(2D)Mo_(2)C MXene via an oxidation process in HCl aqueous solution.In the second hydrothermal step,CdS nanorods were uniformly assembled on the surface of MoO_(2)@Mo_(2)C-MXene in ethylenediamine with an inorganic cadmium source and organic sulfur source.The CdS/MoO_(2)@Mo_(2)C-MXene composite with MoO_(2)@Mo_(2)C-MXene of 5 wt%exhibits an ultrahigh visible-light photocatalytic H_(2)production activity of 22,672μmol/(g·h),which is~21%higher than that of CdS/Mo_(2)C-MXene.In the CdS/MoO_(2)@Mo_(2)C-MXene composite,the MoO_(2)with metallic nature separates CdS and Mo_(2)C MXene,which acts as an electron-transport bridge between CdS and Mo_(2)C MXene to accelerate the photoinduced electron transferring.Moreover,the energy band structure of CdS was changed by MoO_(2)@Mo_(2)C-MXene to suppress the recombination of photogenerated carriers.This novel compound delivers upgraded photocatalytic H_(2)evolution performance and a new pathway of preparing the low-cost photocatalyst to solve energy problems in the future.展开更多
This paper investigated the corrosion behaviors of Ti_(3)AlC_(2) at 700℃in molten KOH with various mass ratios.If the mass ratio of KOH:Ti_(3)AlC_(2)≤2,Ti_(3)AlC_(2) can resist KOH hot corrosion in 2 h.Ti_(3)AlC_(2)...This paper investigated the corrosion behaviors of Ti_(3)AlC_(2) at 700℃in molten KOH with various mass ratios.If the mass ratio of KOH:Ti_(3)AlC_(2)≤2,Ti_(3)AlC_(2) can resist KOH hot corrosion in 2 h.Ti_(3)AlC_(2) suffered serious corrosion attack if the mass ratio≥3.The main compositions of corroded samples were amorphous graphite and potassium titanates(K_(2)O·nTiO_(2)).If the samples were washed by acid and dried,potassium titanates could decompose to K_(2)O and amorphous rutile.Based on the experimental results,a corrosion mechanism of Ti_(3)AlC_(2) in molten KOH was proposed.展开更多
文摘With the rapid development of intelligent transportation, carpooling with the help of Vehicular Networks plays an important role in improving transportati<span>on efficiency and solving environmental problems. However, attackers us</span>ually launch attacks and cause privacy leakage of carpooling users. In addition, the trust issue between unfamiliar vehicles and passengers reduces the efficiency of carpooling. To address these issues, this paper introduced a trusted and pr<span>ivacy-preserving carpooling matching scheme in Vehicular Networks (T</span>PCM). TPC<span>M scheme introduced travel preferences during carpooling matching, according to the passengers’ individual travel preferences needs, which adopt</span>ed th<span>e privacy set intersection technology based on the Bloom filter to match t</span>he passengers with the vehicles to achieve the purpose of protecting privacy an<span>d meeting the individual needs of passengers simultaneously. TPCM sch</span>eme adopted a multi-faceted trust management model, which calculated the trust val<span>ue of different travel preferences of vehicle based on passengers’ carp</span>ooling feedback to evaluate the vehicle’s trustworthiness from multi-faceted when carpooling matching. Moreover, a series of experiments were conducted to verify the effectiveness and robustness of the proposed scheme. The results show that the proposed scheme has high accuracy, lower computational and communication costs when compared with the existing carpooling schemes.
文摘Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high-quality interfacial contact.Herein,we develop a novel strategy to in-situ grow ultrathin/V-doped graphene(NG)layer on TiO_(2) hollow spheres(HS) with large area and intimate interfacial contact via a chemical vapor deposition(CVD).The optimized TiO^(2)/NG HS nanocomposite achieves total CO_(2)conversion rates(the sum yield of CO,CH_(3)OH and CH_(4))of 18.11μmol·g^(-1)h^(-1),which is about 4.6 times higher than blank T1O_(2)HS.Experimental results demonstrate that intimate interfacial contact and abundant pyridinic N sites can effectively facilitate photogenerated charge carrier separation and transport,realizing enhanced photocatalytic CO_(2)reduction performance.In addition,this work provides an effective strategy for in-situ construction of graphene-based photocatalysts for highly efficient photocatalytic CO_(2)conversion.
基金supported in part by the Fundamental Research Funds for the Central Universities(No.21620350)in part by the National Natural Science Foundation of China(No.62102167 and No.62032025)in part by the Guangdong Basic and Applied Basic Research Foundation(2020A1515110364).
文摘Due to the openness of wireless multiuser networks,the private information transmitted in uplink or downlink is vulnerable to eavesdropping.Especially,when the downlink transmissions use nonorthogonal multiple access(NOMA)techniques,the system further encounters interior eavesdropping.In order to address these security problems,we study the secret communication in multiuser networks with both uplink and downlink transmissions.Specifically,in uplink transmissions,the private messages transmitted in each slot are correlated,so any loss of the private information at the eavesdropper will prevent the eavesdropper from decoding the private information in later time slots.In downlink transmissions,the messages are correlated to the uplink information.In this way,any unexpected users who lose the expected user’s uplink information cannot decode its downlink information.The intercept probability is used to measure security performance and we analyze it in theory.Finally,simulation results are provided to corroborate our theoretical analysis.
文摘Natural radioactivity is very important for the assessment of the marine sand property and usability. By using gamma spectrometry, the concentration of the natural radionuclides 226Ra, 232Th and 40K have been measured in marine sand deposits from Liaodong Bay (LDB), North Yellow Sea (NYS), Zhoushan area (ZS), Taiwan Shoal (TS) and Pearl River Mouth (PR), offshore China, which are potential marine sand mining areas. The radiation activity equivalent (Raeq), indoor gamma absorbed dose rate (DR), annual effective dose (HR), alpha index (Ia), gamma index (Ig), external radiation hazard index (Hex), internal radiation hazard index (Hin), representative level index (RLI), excess lifetime cancer risk (ELCR) and annual gonadal dose equivalent (AGDE) associated with the natural radionuclides are calculated to assess the radiation hazard of the natural radioactivity in the marine sands offshore China. From the analysis, it is found that these marine sands are safe for the constructions. The Pearson correlation coefficient reveals that the 226Ra distribution in the marine sands offshore China is controlled by the variation of the 40K concentration. Principal component analysis (PCA) yields a two-component representation of the entire data from the marine sands, wherein 98.22% of the total variance is explained. Our results provide good baseline data to expand the database of radioactivity of building materials in China and all over the world.
基金Support by National Key Research and Development Program of China(2017YFB0306701)State Key Laboratory Opening Project Foundation of Jilin University(2018-16).
文摘The BF3/n-BuOH complexes were investigated as active species in catalyzing n-decene polymerization reaction.The structures of BF3/n-BuOH complexes were characterized not only by modern spectrum but also by calculation at theoretical level. The results confirmed that BF3/n-BuOH complexes changed from BF3·(n-BuOH)2 complexes to BF3·n-BuOH complexes with the mass fraction of BF3 increasing. These two complexes have different catalytic activity, but BF3·n-BuOH was superior. The highest n-decene conversion could reach 99% and the most excellent selectivity of n-decene trimer and tetramer could reach up to 80% yield by a series of controlled conditions. This work can help to understand the catalytic active species of n-decene polymerization and provide support for industrialization of poly-alpha-olefins(PAOs).
基金The National Natural Science Foundation of China under contract Nos 41606087,91858208,and 42076069the Taishan Scholar Special Experts Project under contract No.TS201712079+1 种基金the National Key Basic Research and Development Program of China under contract No.2017YFC0307704the Marine Geological Survey Program of China Geological Survey under contract Nos DD20190518 and DD20190819。
文摘Cold seeps are pervasive along the continental margin worldwide,and are recognized as hotspots for elemental cycling pathway on Earth.In this study,analyses of pore water geochemical compositions of one-400 cm piston core(S3)and the application of a mass balance model are conducted to assess methane-associated biogeochemical reactions and uncover the relationship of methane in shallow sediment with gas hydrate reservoir at the Makran accretionary wedge off Pakistan.The results revealed that approximately 77%of sulfate is consumed by the predominant biogeochemical process of anaerobic oxidation of methane.However,the estimated sulfate-methane interface depth is-400 cm below sea floor with the methane diffusive flux of 0.039 mol/(m^(2)·a),suggesting the activity of methane seepage.Based on the δ^(13)C_(DIC) mass balance model combined with the contribution proportion of different dissolved inorganic carbon sources,this study calculated the δ^(13)C of the exogenous methane to be-57.9‰,indicating that the exogenous methane may be a mixture source,including thermogenic and biogenic methane.The study of pore water geochemistry at Makran accretionary wedge off Pakistan may have considerable implications for understanding the specific details on the dynamics of methane in cold seeps and provide important evidence for the potential occurrence of subsurface gas hydrate in this area.
基金supported by the Major Science and Technologyprojectsof Henan Province,China(No.221100310100).
文摘Gastric cancer(GC)ranks fifth for cancer incidence and fourth for mortality globally.1 Clinical outcomes have varied among patients receiving similar treatments at the same stage,suggesting the current prognostic tools remain somewhat flawed.2,3 single-cell analysis of GC data allowed us to dissect transcriptional programs underlying lymphocyte residency and exhaustion.
文摘Infection susceptibility,poor vaccination efficacy,age-related disease onset,and neoplasms are linked to innate and adaptive immune dysfunction that accompanies aging(known as immunosenescence).During aging,organisms tend to develop a characteristic inflammatory state that expresses high levels of pro-inflammatory markers,termed inflammaging.This chronic inflammation is a typical phenomenon linked to immunosenescence and it is considered the major risk factor for age-related diseases.Thymic involution,naïve/memory cell ratio imbalance,dysregulated metabolism,and epigenetic alterations are striking features of immunosenescence.Disturbed T-cell pools and chronic antigen stimulation mediate premature senescence of immune cells,and senescent immune cells develop a proinflammatory senescence-associated secretory phenotype that exacerbates inflammaging.Although the underlying molecular mechanisms remain to be addressed,it is well documented that senescent T cells and inflammaging might be major driving forces in immunosenescence.Potential counteractive measures will be discussed,including intervention of cellular senescence and metabolic-epigenetic axes to mitigate immunosenescence.In recent years,immunosenescence has attracted increasing attention for its role in tumor development.As a result of the limited participation of elderly patients,the impact of immunosenescence on cancer immunotherapy is unclear.Despite some surprising results from clinical trials and drugs,it is necessary to investigate the role of immunosenescence in cancer and other age-related diseases.
基金supported by the National Natural Science Foundation of China(52275187,52202364)Natural Science Foundation of Henan(232300421135)Fundamental Research Funds for the Universities of Henan Province(NSFRF200101).
文摘Two-dimensional MXenes are generally prepared by the etching of acid solutions.The as-synthesized MXenes are terminated by acid group anions(F^(–),Cl^(–),etc.),which affect the electrochemical performance of MXenes.Here,we report a novel method to prepare Mo_(2)C MXene from Mo_(2)Ga_(2)C by the hydrothermal etching of alkali solutions.Highly pure Mo_(2)C MXene was successfully synthesized by the etching of NaOH,while the etchings of LiOH and KOH were failed.The concentration of NaOH,temperature,and time strongly affect the purity of as-prepared MXene.Pure Mo_(2)C MXene could be synthesized by the etching of 20 M NaOH at 180 for 24 h.After℃intercalation by hexadecyl trimethyl ammonium bromide at 90 for 96 h,few℃-layer Mo_(2)C MXene was obtained.The Mo_(2)C MXene made by NaOH etching after intercalation exhibited excellent performance as anode of lithium-ion battery,compared with general Mo_(2)C MXene made by HF etching and the Mo_(2)C MXene reported in literature.The final discharge specific capacity was 266.73 mAh·g^(−1)at 0.8 A·g^(−1),which is 52%higher than that Mo_(2)C made by HF etching(175.77 mAh·g^(−1)).This is because Mo_(2)C MXene made by NaOH etching has lager specific surface area,lower resistance,and pure O/OH termination without acid anion termination.This is the first report to make Mo_(2)C MXene by alkali etching and the samples made by this method exhibited significantly better electrochemical performance than the samples made by general HF etching.
基金funded by the National Key Research and Development Program of China(Nos.2021YFC2701800 and 2021YFC2701801)the Shanghai Municipal Science and Technology Major Project(No.ZD2021CY001).
文摘The Omicron variant of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)was first confirmed in November 2021 in South Africa^([1])and is more transmissible than other sub-variants.^([2])The influence of Omicron in children has been recognized with increased hospital admission rate than Delta wave.^([3,4])But severe clinical outcomes and comorbidity of Omicron are less than Delta in children.^([5])Hospitalized children during the Omicron period were more likely to be younger than that in the pre-Omicron period.^([6])
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.51932007,51872220,51961135303,21871217,52073223,52063028,U1905215 and U1705251)。
文摘Preparation of efficient photocatalysts with ease of recovery in solar fuel generation is highly desired to achieve carbon neutralization in carbon dioxide(CO_(2))emissions.Inspired from the forest with superior light penetration and fast gas transport,a TiO_(2)/g-C_(3)N_(4)composite nanowire arrays(NAs)film with maximized light utilization is devised.It is achieved by in-situ coating a thin layer of g-C_(3)N_(4)(as the leaf)on the vertically-oriented TiO_(2)arrays(as tree trunks)on Ti foil(as soil).Benefiting from the effective charge separation by S-scheme charge transfer,intimate contact by the in-situ growth as well as the ingenious structure,the composite,readily recyclable,displays exciting performance in photocatalytic CO_(2)reduction.It is beyond doubt that the combination of heterojunction construction and“nature-inspired biomimetic photocatalyst”design promises practical applications and industrial use.
基金supported by the National Natural Science Foundation of China(No.51772077)Program for Innovative Research Team(in Science and Technology)in the University of Henan Province(No.19IRTSTHN027)+2 种基金Natural Science Foundation of Henan Province(Nos.182300410228 and 182300410275)the China Postdoctoral Science Foundation(No.2019M652537)Henan Postdoctoral Foundation(No.19030065)。
文摘In this study,two-dimensional V2CTx MXene has been prepared by selectively etching Al layers from V2 AlC MAX phase by NaF+HCl etching at 90℃for 72 h and its performance as supercapacitor(SC)electrode were tested using simulating seawater as electrolyte.V2CTx MXene-based electrodes shows a good capacitance of 181.1 F/g,which is in accordance with the volumetric specific capacitance of 317.8 F/cm^3,and with 89.1%capacitance retention even after 5000 cycle.Compared with other MXenes,V2CTx have better electrochemical performance as SC electrode.This work provides an innovative strategy to apply V2CTx MXene as SC electrode in safety and effective seawater electrolyte.
基金supported by National Nature Science Foundation of China(51472075,51205111)Plan for Scientific Innovation Talent of Henan Province(134100510008)+2 种基金Program for Innovative Research Team of Henan Polytechnic University(T2013-4)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(KF201313)Opening Project of Henan Key Discipline Open Laboratory of Mining Engineering Materials(MEM12-11).
文摘Two-dimensional(2D)carbide Ti_(3)C_(2)was synthesized by exfoliating Ti_(3)AlC_(2)in HF solution and used for supercapacitive performance investigation in 3 M KOH electrolyte.The specific surface area(SSA)of as-synthesized Ti_(3)C_(2)was 22.35 m^(2)/g.Ti_(3)C_(2)-based supercapacitor electrodes exhibited good energy storage ability and had a volumetric capacitance 119.8 F/cm^(3)at the current density of 2.5 A/g.Moreover,the addition of carbon black into Ti_(3)C_(2)powders greatly improved the performance of Ti_(3)C_(2)-based capacitors because carbon black restrained the preferred orientation of 2D Ti_(3)C_(2),providing fast ion transport channels,and in turn,decreasing electrical resistance from 16.7Ωto 3.5Ω.
基金supported by National Natural Science Foundation of China (Grant Nos. 51472075 and 51772077)Program for Innovative Research Team (in Science and Technology)in the University of Henan Province (Grant No. 19IRTSTHN027)Natural Science Foundation of Henan Province (Grant Nos. 182300410228 and 182300410275)
文摘Two-dimensional carbide MXenes(Ti_3C_2T_x and V_2CT_x)were prepared by exfoliating MAX phases(Ti_3AlC_2 and V_2AlC)powders in the solution of sodium fluoride(NaF)and hydrochloric acid(HCl).The specific surface area(SSA)of as-prepared Ti_3C_2T_x was 21 m^2/g,and that of V_2CT_x was 9 m^2/g.After intercalation with dimethylsulfoxide,the SSA of Ti_3C_2T_x was increased to 66 m^2/g;that of V_2CT_x was increased to 19 m^2/g.Their adsorption properties on carbon dioxide(CO_2)were investigated under 0–4 MPa at room temperature(298 K).Intercalated Ti_3C_2T_x had the adsorption capacity of 5.79 mmol/g,which is close to the capacity of many common sorbents.The theoretical capacity of Ti_3C_2T_x with the SSA of 496 m^2/g was up to 44.2 mmol/g.Additionally,due to high pack density,MXenes had very high volume-uptake capacity.The capacity of intercalated Ti_3C_2T_(x )measured in this paper was 502 V·v^(–1).This value is already higher than volume capacity of most known sorbents.These results suggest that MXenes have some advantage features to be researched as novel CO_2 capture materials.
基金supported by the National Natural Science Foundation of China(51772077)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(19IRTSTHN027)+5 种基金the Fundamental Research Funds for the Universities of Henan Province(NSFRF200101)the China Postdoctoral Science Foundation(2019M652537)the Henan Postdoctoral Foundation(19030065)the Henan Province Key Science and Tech-nology Research Projects(202102310628)the Foundation of Henan Educational Committee(20B430006)the Doctoral Foundation of Henan Polytechnic University(B2019-41).
文摘The effect of etching environment(opened or closed)on the synthesis and electrochemical properties of V_(2)C MXene was studied.V_(2)C MXene samples were synthesized by selectively etching of V2AlC at 90℃in two different environments:opened environment(OE)in oil bath pans under atmosphere pressure and closed environment(CE)in hydrothermal reaction kettles under higher pressures.In OE,only NaF(sodium fluoride)+HCl(hydrochloric acid)etching solution can be used to synthesize highly pure V_(2)C MXene.However,in CE,both LiF(lithium fluoride)+HCl and NaF+HCl etchant can be used to prepare V_(2)C MXene.Moreover,the V_(2)C MXene samples made in CE had higher purity and better-layered structure than those made in OE.Although the purity of V_(2)C obtained by LiF+HCl is lower than that of V_(2)C obtained using NaF+HCl,it shows better electrochemical performance as anodes of lithium-ion batteries(LIBs).Therefore,etching in CE is a better method for preparing highly pure V_(2)C MXene,which provides a reference for expanding the synthesis methods of V_(2)C with better electrochemical properties.
基金supported by the National Natural Science Foundation of China[grant number 41671452].
文摘Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propose a Multi-Scale Fully Convolutional Network(MSFCN)with a multi-scale convolutional kernel as well as a Channel Attention Block(CAB)and a Global Pooling Module(GPM)in this paper to exploit discriminative representations from two-dimensional(2D)satellite images.Meanwhile,to explore the ability of the proposed MSFCN for spatio-temporal images,we expand our MSFCN to three-dimension using three-dimensional(3D)CNN,capable of harnessing each land cover category’s time series interac-tion from the reshaped spatio-temporal remote sensing images.To verify the effectiveness of the proposed MSFCN,we conduct experiments on two spatial datasets and two spatio-temporal datasets.The proposed MSFCN achieves 60.366%on the WHDLD dataset and 75.127%on the GID dataset in terms of mIoU index while the figures for two spatio-temporal datasets are 87.753%and 77.156%.Extensive comparative experiments and abla-tion studies demonstrate the effectiveness of the proposed MSFCN.
基金This work was supported by National Natural Science Foundation of China(No.51772077)Program for Innovative Research Team(in Science and Technology)in the University of Henan Province(No.19IRTSTHN027)+1 种基金Fundamental Research Funds for the Universities of Henan Province(No.NSFRF200101)Henan Key Laboratory of Materials on Deep-Earth Engineering(No.MDE2019-02).
文摘Nowadays,photocatalytic technologies are regarded as promising strategies to solve energy problems,and various photocatalysts have been synthesized and explored.In this paper,a novel CdS/MoO_(2)@Mo_(2)C-MXene photocatalyst for H_(2)production was constructed by a two-step hydrothermal method,where MoO_(2)@Mo_(2)C-MXene acted as a binary co-catalyst.In the first hydrothermal step,MoO_(2)crystals with an egged shape grew on the surface of two-dimensional(2D)Mo_(2)C MXene via an oxidation process in HCl aqueous solution.In the second hydrothermal step,CdS nanorods were uniformly assembled on the surface of MoO_(2)@Mo_(2)C-MXene in ethylenediamine with an inorganic cadmium source and organic sulfur source.The CdS/MoO_(2)@Mo_(2)C-MXene composite with MoO_(2)@Mo_(2)C-MXene of 5 wt%exhibits an ultrahigh visible-light photocatalytic H_(2)production activity of 22,672μmol/(g·h),which is~21%higher than that of CdS/Mo_(2)C-MXene.In the CdS/MoO_(2)@Mo_(2)C-MXene composite,the MoO_(2)with metallic nature separates CdS and Mo_(2)C MXene,which acts as an electron-transport bridge between CdS and Mo_(2)C MXene to accelerate the photoinduced electron transferring.Moreover,the energy band structure of CdS was changed by MoO_(2)@Mo_(2)C-MXene to suppress the recombination of photogenerated carriers.This novel compound delivers upgraded photocatalytic H_(2)evolution performance and a new pathway of preparing the low-cost photocatalyst to solve energy problems in the future.
基金This work was supported by the National Nature Science Foundation of China(Grant Nos.51002045,51205111)Program for Innovative Research Team of Henan Polytechnic University(T2013-4)Opening Project of Henan Key Discipline Open Laboratory of Mining Engineering Materials(MEM12-5).
文摘This paper investigated the corrosion behaviors of Ti_(3)AlC_(2) at 700℃in molten KOH with various mass ratios.If the mass ratio of KOH:Ti_(3)AlC_(2)≤2,Ti_(3)AlC_(2) can resist KOH hot corrosion in 2 h.Ti_(3)AlC_(2) suffered serious corrosion attack if the mass ratio≥3.The main compositions of corroded samples were amorphous graphite and potassium titanates(K_(2)O·nTiO_(2)).If the samples were washed by acid and dried,potassium titanates could decompose to K_(2)O and amorphous rutile.Based on the experimental results,a corrosion mechanism of Ti_(3)AlC_(2) in molten KOH was proposed.