The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m oc...The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m ocean heat content(OHC)reached record highs.The 0–2000 m OHC in 2023 exceeded that of 2022 by 15±10 ZJ(1 Zetta Joules=1021 Joules)(updated IAP/CAS data);9±5 ZJ(NCEI/NOAA data).The Tropical Atlantic Ocean,the Mediterranean Sea,and southern oceans recorded their highest OHC observed since the 1950s.Associated with the onset of a strong El Niño,the global SST reached its record high in 2023 with an annual mean of~0.23℃ higher than 2022 and an astounding>0.3℃ above 2022 values for the second half of 2023.The density stratification and spatial temperature inhomogeneity indexes reached their highest values in 2023.展开更多
Composite analyses were performed in this study to reveal the difference in spring precipitation over southern China during multiyear La Ni?a events during 1901 to 2015. It was found that there is significantly below-...Composite analyses were performed in this study to reveal the difference in spring precipitation over southern China during multiyear La Ni?a events during 1901 to 2015. It was found that there is significantly below-normal precipitation during the first boreal spring, but above-normal precipitation during the second year. The difference in spring precipitation over southern China is correlative to the variation in western North Pacific anomalous cyclone(WNPC), which can in turn be attributed to the different sea surface temperature anomaly(SSTA) over the Tropical Pacific. The remote forcing of negative SSTA in the equatorial central and eastern Pacific and the local air-sea interaction in the western North Pacific are the usual causes of WNPC formation and maintenance.SSTA in the first spring is stronger than those in the second spring. As a result, the intensity of WNPC in the first year is stronger, which is more likely to reduce the moisture in southern China by changing the moisture transport, leading to prolonged precipitation deficits over southern China. However, the tropical SSTA signals in the second year are too weak to induce the formation and maintenance of WNPC and the below-normal precipitation over southern China. Thus, the variation in tropical SSTA signals between two consecutive springs during multiyear La Ni?a events leads to obvious differences in the spatial pattern of precipitation anomaly in southern China by causing the different WNPC response.展开更多
The importance of the Atlantic Multidecadal Oscillation(AMO)and Interdecadal Pacific Oscillation(IPO)in influencing zonally asymmetric changes in Antarctic surface air temperature(SAT)has been established.However,prev...The importance of the Atlantic Multidecadal Oscillation(AMO)and Interdecadal Pacific Oscillation(IPO)in influencing zonally asymmetric changes in Antarctic surface air temperature(SAT)has been established.However,previous studies have primarily concentrated on examining the combined impact of the contrasting phases of the AMO and IPO,which have been dominant since the advent of satellite observations in 1979.This study utilizes long-term reanalysis data to investigate the impact of four combinations of+AMO+IPO,–AMO–IPO,+AMO–IPO,and–AMO+IPO on Antarctic SAT over the past 115 years.The+AMO phase is characterized by a spatial mean temperature amplitude of up to 0.5℃over the North Atlantic Ocean,accompanied by positive sea surface temperature(SST)anomalies in the tropical eastern Pacific and negative SST anomalies in the extratropical-mid-latitude western Pacific,which are indicative of the+IPO phase.The Antarctic SAT exhibits contrasting spatial patterns during the+AMO+IPO and+AMO–IPO periods.However,during the–AMO+IPO period,apart from the Antarctic Peninsula and the vicinity of the Weddell Sea,the entire Antarctic region experiences a warming trend.The most pronounced signal in the SAT anomalies is observed during the austral autumn,whereas the combination of–AMO and–IPO exhibits the smallest magnitude across all the combinations.The wavetrain excited by the SST anomalies associated with the AMO and IPO induces upper-level and surface atmospheric circulation anomalies,which alter the SAT anomalies.Furthermore,downward longwave radiation anomalies related to anomalous cloud cover play a crucial role.In the future,if the phases of AMO and IPO were to reverse(AMO transitioning to a negative phase and IPO transitioning to a positive phase),Antarctica could potentially face more pronounced warming and accelerated melting compared to the current observations.展开更多
After the strong 2015/16 El Nino event,cold conditions prevailed in the tropical Pacific with the second-year cooling of the 2017/18 La Ni?a event.Many coupled models failed to predict the cold SST anomalies(SSTAs)in ...After the strong 2015/16 El Nino event,cold conditions prevailed in the tropical Pacific with the second-year cooling of the 2017/18 La Ni?a event.Many coupled models failed to predict the cold SST anomalies(SSTAs)in 2017.By using the ERA5 and GODAS(Global Ocean Data Assimilation System)products,atmospheric and oceanic factors were examined that could have been responsible for the second-year cooling,including surface wind and the subsurface thermal state.A time sequence is described to demonstrate how the cold SSTAs were produced in the central-eastern equatorial Pacific in late 2017.Since July 2017,easterly anomalies strengthened in the central Pacific;in the meantime,wind stress divergence anomalies emerged in the far eastern region,which strengthened during the following months and propagated westward,contributing to the development of the second-year cooling in 2017.At the subsurface,weak negative temperature anomalies were accompanied by upwelling in the eastern equatorial Pacific,which provided the cold water source for the sea surface.Thereafter,both the cold anomalies and upwelling were enhanced and extended westward in the centraleastern equatorial Pacific.These changes were associated with the seasonally weakened EUC(the Equatorial Undercurrent)and strengthened SEC(the South Equatorial Current),which favored more cold waters being accumulated in the central-equatorial Pacific.Then,the subsurface cold waters stretched upward with the convergence of the horizontal currents and eventually outcropped to the surface.The subsurface-induced SSTAs acted to induce local coupled air–sea interactions,which generated atmospheric–oceanic anomalies developing and evolving into the second-year cooling in the fall of 2017.展开更多
Changes in ocean heat content(OHC), salinity, and stratification provide critical indicators for changes in Earth’s energy and water cycles. These cycles have been profoundly altered due to the emission of greenhouse...Changes in ocean heat content(OHC), salinity, and stratification provide critical indicators for changes in Earth’s energy and water cycles. These cycles have been profoundly altered due to the emission of greenhouse gasses and other anthropogenic substances by human activities, driving pervasive changes in Earth’s climate system. In 2022, the world’s oceans, as given by OHC, were again the hottest in the historical record and exceeded the previous 2021 record maximum.According to IAP/CAS data, the 0–2000 m OHC in 2022 exceeded that of 2021 by 10.9 ± 8.3 ZJ(1 Zetta Joules = 1021Joules);and according to NCEI/NOAA data, by 9.1 ± 8.7 ZJ. Among seven regions, four basins(the North Pacific, North Atlantic, the Mediterranean Sea, and southern oceans) recorded their highest OHC since the 1950s. The salinity-contrast index, a quantification of the “salty gets saltier–fresh gets fresher” pattern, also reached its highest level on record in 2022,implying continued amplification of the global hydrological cycle. Regional OHC and salinity changes in 2022 were dominated by a strong La Ni?a event. Global upper-ocean stratification continued its increasing trend and was among the top seven in 2022.展开更多
After its maturity,El Niño usually decays rapidly in the following summer and evolves into a La Niña pattern.However,this was not the case for the 2018/19 El Niño event.Based on multiple reanalysis data...After its maturity,El Niño usually decays rapidly in the following summer and evolves into a La Niña pattern.However,this was not the case for the 2018/19 El Niño event.Based on multiple reanalysis data sets,the space-time evolution and triggering mechanism for the unusual second-year warming in late 2019,after the 2018/19 El Niño event,are investigated in the tropical Pacific.After a short decaying period associated with the 2018/19 El Niño condition,positive sea surface temperature anomalies(SSTAs)re-intensified in the eastern equatorial Pacific in late 2019.Compared with the composite pattern of El Niño in the following year,two key differences are evident in the evolution of SSTAs in 2019.First,is the persistence of the surface warming over the central equatorial Pacific in May,and second,is the re-intensification of the positive SSTAs over the eastern equatorial Pacific in September.Observational results suggest that the re-intensification of anomalous westerly winds over the western and central Pacific,induced remotely by an extreme Indian Ocean Dipole(IOD)event,acted as a triggering mechanism for the second-year warming in late 2019.That is,the IOD-related cold SSTAs in the eastern Indian Ocean established and sustained anomalous surface westerly winds over the western equatorial Pacific,which induced downwelling Kelvin waves propagating eastward along the equator.At the same time,the subsurface ocean provided plenty of warm water in the western and central equatorial Pacific.Mixed-layer heat budget analyses further confirm that positive zonal advection,induced by the anomalous westerly winds,and thermocline feedback played important roles in leading to the second-year warming in late 2019.This study provides new insights into the processes responsible for the diversity of El Niño evolution,which is important for improving the physical understanding and seasonal prediction of El Niño events.展开更多
Based on the updates of the Climate Prediction Center and International Research Institute for Climate and Society(CPC/IRI)and the China Multi-Model Ensemble(CMME)El Niño-Southern Oscillation(ENSO)Outlook issued ...Based on the updates of the Climate Prediction Center and International Research Institute for Climate and Society(CPC/IRI)and the China Multi-Model Ensemble(CMME)El Niño-Southern Oscillation(ENSO)Outlook issued in April 2022,La Niña is favored to continue through the boreal summer and fall,indicating a high possibility of a three-year La Niña(2020-23).It would be the first three-year La Niña since the 1998-2001 event,which is the only observed three-year La Niña event since 1980.By examining the status of air-sea fields over the tropical Pacific in March 2022,it can be seen that while the thermocline depths were near average,the southeasterly wind stress was at its strongest since 1980.Here,based on a quaternary linear regression model that includes various relevant air-sea variables over the equatorial Pacific in March,we argue that the historic southeasterly winds over the equatorial Pacific are favorable for the emergence of the third-year La Niña,and both the anomalous easterly and southerly wind stress components are important and contribute~50%of the third-year La Niña growth,respectively.Additionally,the possible global climate impacts of this event are discussed.展开更多
The evolution of sea surface temperature(SST)in the tropical Pacific during 2020–2021 indicates a second-year cooling in late 2021 again,following the 2020 La Niña event.Its physical explanations are still lacki...The evolution of sea surface temperature(SST)in the tropical Pacific during 2020–2021 indicates a second-year cooling in late 2021 again,following the 2020 La Niña event.Its physical explanations are still lacking,and there is a clear need to understand the underlying processes involved.Observational data and reanalysis products are used to describe the characteristics and spatiotemporal evolution of upper-ocean thermal anomalies;an intermediate coupled model(ICM)is also used to perform numerical experiments to confirm these observation-based inferences.The evolution of subsurface thermal anomalies is critically important to that of SST in the central-eastern equatorial Pacific;the effects of the former on the latter can be well represented by the temperature of subsurface waters entrained into the mixed layer(Te),a field that reflects a subsurface forcing on SST.The SST evolution is sensitively dependent on the intensities of the local effect associated with Te anomalies in the eastern equatorial Pacific and the remote effect associated with subsurface anomalies from the western Pacific.During early-and mid-2021,a competition was present between these local and remote effects associated with Te anomalies.When the remote warming effect dominates the local cooling effect,the cold SST condition in the east is likely to turn into neutral and warm conditions;otherwise,it tends to continue.In addition,the negative Te anomalies were sustained and enhanced by off-equatorial processes due to equatorial wave reflections at the eastern boundary associated with the 2020 La Niña event.The SST evolution in mid-2021 corresponded to a situation in which the warming effect associated with positive subsurface thermal anomalies from the west were not strong enough to counteract the local cooling effect associated with negative anomalies in the east.In due course,cold SST anomalies in the east developed again and the second-year cooling reoccurred in late 2021,with a turning point in June 2021.Modeling experiments support these arguments and indicate that the intensity of subsurface thermal effect on SST,as represented by Te anomalies,needs to be adequately depicted for coupled models to capture the 2021 second-year cooling conditions in the tropical Pacific.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 42076202, 42122046, 42206208 and 42261134536)the Open Research Cruise NORC2022-10+NORC2022-303 supported by NSFC shiptime Sharing Projects 42149910+7 种基金the new Cornerstone Science Foundation through the XPLORER PRIZE, DAMO Academy Young Fellow, Youth Innovation Promotion Association, Chinese Academy of SciencesNational Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (EarthLab)sponsored by the US National Science Foundationsupported by NASA Awards 80NSSC17K0565, 80NSSC21K1191, and 80NSSC22K0046by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy’s Office of Biological & Environmental Research (BER) via National Science Foundation IA 1947282supported by NOAA (Grant No. NA19NES4320002 to CISESS-MD at the University of Maryland)supported by the Young Talent Support Project of Guangzhou Association for Science and Technologyfunded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in agreement between INGV, ENEA, and GNV SpA shipping company that provides hospitality on its commercial vessels
文摘The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m ocean heat content(OHC)reached record highs.The 0–2000 m OHC in 2023 exceeded that of 2022 by 15±10 ZJ(1 Zetta Joules=1021 Joules)(updated IAP/CAS data);9±5 ZJ(NCEI/NOAA data).The Tropical Atlantic Ocean,the Mediterranean Sea,and southern oceans recorded their highest OHC observed since the 1950s.Associated with the onset of a strong El Niño,the global SST reached its record high in 2023 with an annual mean of~0.23℃ higher than 2022 and an astounding>0.3℃ above 2022 values for the second half of 2023.The density stratification and spatial temperature inhomogeneity indexes reached their highest values in 2023.
基金The National Natural Science Foundation of China under contract Nos 41576029, 41976221 and 42030410the National Key Research and Development Program of China under contract No. 2019YFA0606702the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology。
文摘Composite analyses were performed in this study to reveal the difference in spring precipitation over southern China during multiyear La Ni?a events during 1901 to 2015. It was found that there is significantly below-normal precipitation during the first boreal spring, but above-normal precipitation during the second year. The difference in spring precipitation over southern China is correlative to the variation in western North Pacific anomalous cyclone(WNPC), which can in turn be attributed to the different sea surface temperature anomaly(SSTA) over the Tropical Pacific. The remote forcing of negative SSTA in the equatorial central and eastern Pacific and the local air-sea interaction in the western North Pacific are the usual causes of WNPC formation and maintenance.SSTA in the first spring is stronger than those in the second spring. As a result, the intensity of WNPC in the first year is stronger, which is more likely to reduce the moisture in southern China by changing the moisture transport, leading to prolonged precipitation deficits over southern China. However, the tropical SSTA signals in the second year are too weak to induce the formation and maintenance of WNPC and the below-normal precipitation over southern China. Thus, the variation in tropical SSTA signals between two consecutive springs during multiyear La Ni?a events leads to obvious differences in the spatial pattern of precipitation anomaly in southern China by causing the different WNPC response.
基金The National Natural Science Foundation of China under contract No.41976221the National Key Scientific and Technological Infrastructure Project“Earth System Numerical Simulation Facility”(EarthLab).
文摘The importance of the Atlantic Multidecadal Oscillation(AMO)and Interdecadal Pacific Oscillation(IPO)in influencing zonally asymmetric changes in Antarctic surface air temperature(SAT)has been established.However,previous studies have primarily concentrated on examining the combined impact of the contrasting phases of the AMO and IPO,which have been dominant since the advent of satellite observations in 1979.This study utilizes long-term reanalysis data to investigate the impact of four combinations of+AMO+IPO,–AMO–IPO,+AMO–IPO,and–AMO+IPO on Antarctic SAT over the past 115 years.The+AMO phase is characterized by a spatial mean temperature amplitude of up to 0.5℃over the North Atlantic Ocean,accompanied by positive sea surface temperature(SST)anomalies in the tropical eastern Pacific and negative SST anomalies in the extratropical-mid-latitude western Pacific,which are indicative of the+IPO phase.The Antarctic SAT exhibits contrasting spatial patterns during the+AMO+IPO and+AMO–IPO periods.However,during the–AMO+IPO period,apart from the Antarctic Peninsula and the vicinity of the Weddell Sea,the entire Antarctic region experiences a warming trend.The most pronounced signal in the SAT anomalies is observed during the austral autumn,whereas the combination of–AMO and–IPO exhibits the smallest magnitude across all the combinations.The wavetrain excited by the SST anomalies associated with the AMO and IPO induces upper-level and surface atmospheric circulation anomalies,which alter the SAT anomalies.Furthermore,downward longwave radiation anomalies related to anomalous cloud cover play a crucial role.In the future,if the phases of AMO and IPO were to reverse(AMO transitioning to a negative phase and IPO transitioning to a positive phase),Antarctica could potentially face more pronounced warming and accelerated melting compared to the current observations.
基金jointly supported by grants from the National Natural Science Foundation of China[Grant Nos.41576029 and 41690122(41690120)]the National Program on Global Change and Air–Sea Interaction(Grant No.GASIIPOVAI-03)+1 种基金the National Key Research and Development Program(Grant No.2018YFC1505802)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA19060102 and XDB 40000000)。
文摘After the strong 2015/16 El Nino event,cold conditions prevailed in the tropical Pacific with the second-year cooling of the 2017/18 La Ni?a event.Many coupled models failed to predict the cold SST anomalies(SSTAs)in 2017.By using the ERA5 and GODAS(Global Ocean Data Assimilation System)products,atmospheric and oceanic factors were examined that could have been responsible for the second-year cooling,including surface wind and the subsurface thermal state.A time sequence is described to demonstrate how the cold SSTAs were produced in the central-eastern equatorial Pacific in late 2017.Since July 2017,easterly anomalies strengthened in the central Pacific;in the meantime,wind stress divergence anomalies emerged in the far eastern region,which strengthened during the following months and propagated westward,contributing to the development of the second-year cooling in 2017.At the subsurface,weak negative temperature anomalies were accompanied by upwelling in the eastern equatorial Pacific,which provided the cold water source for the sea surface.Thereafter,both the cold anomalies and upwelling were enhanced and extended westward in the centraleastern equatorial Pacific.These changes were associated with the seasonally weakened EUC(the Equatorial Undercurrent)and strengthened SEC(the South Equatorial Current),which favored more cold waters being accumulated in the central-equatorial Pacific.Then,the subsurface cold waters stretched upward with the convergence of the horizontal currents and eventually outcropped to the surface.The subsurface-induced SSTAs acted to induce local coupled air–sea interactions,which generated atmospheric–oceanic anomalies developing and evolving into the second-year cooling in the fall of 2017.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42122046 and 42076202)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB42040402)+4 种基金sponsored by the US National Science Foundationsupported by NASA Awards 80NSSC17K0565 and 80NSSC22K0046by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy’s Office of Biological & Environmental Research (BER) via National Science Foundation IA 1947282supported by NOAA (Grant No. NA19NES4320002 to CISESS-MD at the University of Maryland)supported by the Young Talent Support Project of Guangzhou Association for Science and Technology。
文摘Changes in ocean heat content(OHC), salinity, and stratification provide critical indicators for changes in Earth’s energy and water cycles. These cycles have been profoundly altered due to the emission of greenhouse gasses and other anthropogenic substances by human activities, driving pervasive changes in Earth’s climate system. In 2022, the world’s oceans, as given by OHC, were again the hottest in the historical record and exceeded the previous 2021 record maximum.According to IAP/CAS data, the 0–2000 m OHC in 2022 exceeded that of 2021 by 10.9 ± 8.3 ZJ(1 Zetta Joules = 1021Joules);and according to NCEI/NOAA data, by 9.1 ± 8.7 ZJ. Among seven regions, four basins(the North Pacific, North Atlantic, the Mediterranean Sea, and southern oceans) recorded their highest OHC since the 1950s. The salinity-contrast index, a quantification of the “salty gets saltier–fresh gets fresher” pattern, also reached its highest level on record in 2022,implying continued amplification of the global hydrological cycle. Regional OHC and salinity changes in 2022 were dominated by a strong La Ni?a event. Global upper-ocean stratification continued its increasing trend and was among the top seven in 2022.
基金This work is jointly supported by grants from the National Key Research and Development Program(Grant No.2018YFC1505802)the National Natural Science Foundation of China(Grant Nos.41576029,42030410,41690122(41690120),41420104002)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDA19060102,XDB 40000000 and XDB 42000000).
文摘After its maturity,El Niño usually decays rapidly in the following summer and evolves into a La Niña pattern.However,this was not the case for the 2018/19 El Niño event.Based on multiple reanalysis data sets,the space-time evolution and triggering mechanism for the unusual second-year warming in late 2019,after the 2018/19 El Niño event,are investigated in the tropical Pacific.After a short decaying period associated with the 2018/19 El Niño condition,positive sea surface temperature anomalies(SSTAs)re-intensified in the eastern equatorial Pacific in late 2019.Compared with the composite pattern of El Niño in the following year,two key differences are evident in the evolution of SSTAs in 2019.First,is the persistence of the surface warming over the central equatorial Pacific in May,and second,is the re-intensification of the positive SSTAs over the eastern equatorial Pacific in September.Observational results suggest that the re-intensification of anomalous westerly winds over the western and central Pacific,induced remotely by an extreme Indian Ocean Dipole(IOD)event,acted as a triggering mechanism for the second-year warming in late 2019.That is,the IOD-related cold SSTAs in the eastern Indian Ocean established and sustained anomalous surface westerly winds over the western equatorial Pacific,which induced downwelling Kelvin waves propagating eastward along the equator.At the same time,the subsurface ocean provided plenty of warm water in the western and central equatorial Pacific.Mixed-layer heat budget analyses further confirm that positive zonal advection,induced by the anomalous westerly winds,and thermocline feedback played important roles in leading to the second-year warming in late 2019.This study provides new insights into the processes responsible for the diversity of El Niño evolution,which is important for improving the physical understanding and seasonal prediction of El Niño events.
基金supported by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (CASGrant No. ZDBS-LY-DQC010)+3 种基金the National Natural Science Foundation of China (Grant Nos. 4187601242175045)the Strategic Priority Research Program of CAS (Grant No. XDB42000000)Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2020B0301030004)
文摘Based on the updates of the Climate Prediction Center and International Research Institute for Climate and Society(CPC/IRI)and the China Multi-Model Ensemble(CMME)El Niño-Southern Oscillation(ENSO)Outlook issued in April 2022,La Niña is favored to continue through the boreal summer and fall,indicating a high possibility of a three-year La Niña(2020-23).It would be the first three-year La Niña since the 1998-2001 event,which is the only observed three-year La Niña event since 1980.By examining the status of air-sea fields over the tropical Pacific in March 2022,it can be seen that while the thermocline depths were near average,the southeasterly wind stress was at its strongest since 1980.Here,based on a quaternary linear regression model that includes various relevant air-sea variables over the equatorial Pacific in March,we argue that the historic southeasterly winds over the equatorial Pacific are favorable for the emergence of the third-year La Niña,and both the anomalous easterly and southerly wind stress components are important and contribute~50%of the third-year La Niña growth,respectively.Additionally,the possible global climate impacts of this event are discussed.
基金supported by the Laoshan Laboratory(Grant No.2022LSL010301-2)the National Natural Science Foundation of China(Grant No.42176032)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 42000000)supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA19060102 and XDB 40000000)the National Natural Science Foundation of China(Grant No.42030410).
文摘The evolution of sea surface temperature(SST)in the tropical Pacific during 2020–2021 indicates a second-year cooling in late 2021 again,following the 2020 La Niña event.Its physical explanations are still lacking,and there is a clear need to understand the underlying processes involved.Observational data and reanalysis products are used to describe the characteristics and spatiotemporal evolution of upper-ocean thermal anomalies;an intermediate coupled model(ICM)is also used to perform numerical experiments to confirm these observation-based inferences.The evolution of subsurface thermal anomalies is critically important to that of SST in the central-eastern equatorial Pacific;the effects of the former on the latter can be well represented by the temperature of subsurface waters entrained into the mixed layer(Te),a field that reflects a subsurface forcing on SST.The SST evolution is sensitively dependent on the intensities of the local effect associated with Te anomalies in the eastern equatorial Pacific and the remote effect associated with subsurface anomalies from the western Pacific.During early-and mid-2021,a competition was present between these local and remote effects associated with Te anomalies.When the remote warming effect dominates the local cooling effect,the cold SST condition in the east is likely to turn into neutral and warm conditions;otherwise,it tends to continue.In addition,the negative Te anomalies were sustained and enhanced by off-equatorial processes due to equatorial wave reflections at the eastern boundary associated with the 2020 La Niña event.The SST evolution in mid-2021 corresponded to a situation in which the warming effect associated with positive subsurface thermal anomalies from the west were not strong enough to counteract the local cooling effect associated with negative anomalies in the east.In due course,cold SST anomalies in the east developed again and the second-year cooling reoccurred in late 2021,with a turning point in June 2021.Modeling experiments support these arguments and indicate that the intensity of subsurface thermal effect on SST,as represented by Te anomalies,needs to be adequately depicted for coupled models to capture the 2021 second-year cooling conditions in the tropical Pacific.